• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Catcher Bearings for High Temperature Magnetic Bearing Application

Narayanaswamy, Ashwanth 2011 May 1900 (has links)
The Electron Energy Corporation (EEC) along with National Aeronautics and Space Administration (NASA) in collaboration with Vibration Control and Electro mechanics Lab (VCEL), Texas A & M University, College Station, TX are researching on high temperature permanent magnet based magnetic bearings. The magnetic bearings are made of high temperature resistant permanent magnets (up to 1000 degrees F). A test rig has been developed to test these magnetic bearings. The test rig mainly consists of two radial bearings, one axial thrust bearing and two catcher bearings. The test rig that the catcher bearing is inserted in is the first ultra-high temperature rig with permanent magnet biased magnetic bearings and motor. The magnetic bearings are permanent magnet based which is a novel concept. The Graphalloy bearings represent a new approach for ultra-high temperature backup bearing applications. One of the main objectives of this research is to insure the mechanical and electrical integrity for all components of the test rig. Some assemblies and accessories required for the whole assembly need to be designed. The assembly methods need to be designed. The preliminary tests for coefficient of friction, Young's modulus and thermal expansion characteristics for catcher bearing material need to be done. A dynamic model needs to be designed for studying and simulating the rotor drop of the shaft onto the catcher bearing using a finite element approach in MATLAB. The assembly of the test rig was completed successfully by developing assembly fixtures and assembly methods. The components of the test rig were tested before assembly. Other necessary systems like Sensor holder system, Graphalloy press fit system were designed, fabricated and tested. The catcher bearing material (Graphalloy) was tested for coefficient of friction and Young's modulus at room and high temperatures. The rotor drop was simulated by deriving a dynamic model, to study the effect of system parameters like clearance, coefficient of friction, negative stiffness, initial spin speed on system behavior. Increasing the friction increases the backward whirl and decreases the rotor stoppage time. Increasing the clearance reduces the stoppage time and increases the peak bearing force. Increasing the initial spin speed increases the rotor stoppage time. The maximum stress encountered for as built conditions is more than allowable limits.
2

Delevitation modelling of an active magnetic bearing supported rotor / Jan Jacobus Janse van Rensburg

Van Rensburg, Jan Jacobus Janse January 2014 (has links)
The problem addressed in this thesis is the delevitation modelling of an active magnetic bearing (AMB) supported rotor. A system model needs to be developed that models the highly non-linear interaction of the rotor with the backup bearings (BBs) during a delevitation event. The model should accurately predict forward and backward whirl as well as the system forces experienced. To this end, the severity of rotor delevitation events should be characterised. The contributions of the research include a more comprehensive model of a cross-coupled flexible rotor-AMB-BB system, a method to obtain repeatable experimental results, two methods for quantifying the severity of a rotor-drop (RDQ and Vval) and the simulation of forward whirl. A simulation model (BBSim) was developed to predict the behaviour of a rotor in rolling element BBs in an AMB system during a rotor delevitation event. The model was validated using a novel rotor delevitation severity quantification method (Vval) to compare experimental and simulated results. In this study the force impulse values as the rotor impacts the BBs are seen as critical to monitor, as an indication of rotor drop severity. The novel quantification method was verified by comparing the impulse values of delevitation events to the values obtained for the same delevitation events using the novel quantification method. The simulation model (BBSim) was developed by integrating and cross coupling various simpler models to obtain a model that could accurately predict the behaviour of a rotor during a delevitation event. A plethora of simulation results were generated for various initial conditions. The simulation results were used to perform a parametric study, from which the effects that certain design parameters have on the severity of rotor delevitation events are determined. The novel quantification method results presented in this research compared well to the impulse values. Since most AMB systems that have BBs do not have force measurement capabilities, the development of the novel quantification method enables the quantification of rotor drop severity solely based on position data. The simulation model BBSim was found to accurately predict the behaviour of a rotor during a delevitation event. The parametric study completed using BBSim revealed that the severity of rotor delevitation events is less sensitive to the bearing stiffness than the bearing damping. The parametric study also found that the severity of a delevitation event is slightly sensitive to the angle of delevitation. The friction factor between the rotor and the inner-race of the rolling element bearings moderately influences the severity of the rotor delevitation event. The inertia of the rolling element bearing’s inner-race and balls influences the behaviour in a complex manner, where the inertia should be kept as low as possible for actively braked rotors, and should be higher for free running rotors. The unbalance of the rotor plays a major role in the severity of rotor delevitation events. A rotor with a high unbalance usually tends to go into forward whirl, whereas low unbalance could promote the development of backward whirl if the inertia of the inner-race and the friction factor between the inner-race and the rotor are excessively large. Some of the recommended future work to be done on BBSim Include investigations into load sharing, various failure modes of AMBs, the effect that rotor circularity has on the stability of AMB control and an investigation into forward whirl. Envisaged improvements that can be made to BBSim are the inclusion of an axial rotor AMB and BB model, cross-coupled with the existing BBSim model. Other improvements could be the inclusion of thermal modelling and the ability to simulate other types of BBs. Future experimental work could include a comparison of simulated and experimental results of larger systems and using the developed quantification methods to refine the defined threshold values for the safe operation of AMB systems. / PhD, North-West University, Potchefstroom Campus, 2014 / Appendix C is attached seperately because of the size of the pdf (920 MB). If it is too large to download, please loan the hardcopy with the CD from the Loan desk in the Ferdinand Postma Library.
3

Delevitation modelling of an active magnetic bearing supported rotor / Jan Jacobus Janse van Rensburg

Van Rensburg, Jan Jacobus Janse January 2014 (has links)
The problem addressed in this thesis is the delevitation modelling of an active magnetic bearing (AMB) supported rotor. A system model needs to be developed that models the highly non-linear interaction of the rotor with the backup bearings (BBs) during a delevitation event. The model should accurately predict forward and backward whirl as well as the system forces experienced. To this end, the severity of rotor delevitation events should be characterised. The contributions of the research include a more comprehensive model of a cross-coupled flexible rotor-AMB-BB system, a method to obtain repeatable experimental results, two methods for quantifying the severity of a rotor-drop (RDQ and Vval) and the simulation of forward whirl. A simulation model (BBSim) was developed to predict the behaviour of a rotor in rolling element BBs in an AMB system during a rotor delevitation event. The model was validated using a novel rotor delevitation severity quantification method (Vval) to compare experimental and simulated results. In this study the force impulse values as the rotor impacts the BBs are seen as critical to monitor, as an indication of rotor drop severity. The novel quantification method was verified by comparing the impulse values of delevitation events to the values obtained for the same delevitation events using the novel quantification method. The simulation model (BBSim) was developed by integrating and cross coupling various simpler models to obtain a model that could accurately predict the behaviour of a rotor during a delevitation event. A plethora of simulation results were generated for various initial conditions. The simulation results were used to perform a parametric study, from which the effects that certain design parameters have on the severity of rotor delevitation events are determined. The novel quantification method results presented in this research compared well to the impulse values. Since most AMB systems that have BBs do not have force measurement capabilities, the development of the novel quantification method enables the quantification of rotor drop severity solely based on position data. The simulation model BBSim was found to accurately predict the behaviour of a rotor during a delevitation event. The parametric study completed using BBSim revealed that the severity of rotor delevitation events is less sensitive to the bearing stiffness than the bearing damping. The parametric study also found that the severity of a delevitation event is slightly sensitive to the angle of delevitation. The friction factor between the rotor and the inner-race of the rolling element bearings moderately influences the severity of the rotor delevitation event. The inertia of the rolling element bearing’s inner-race and balls influences the behaviour in a complex manner, where the inertia should be kept as low as possible for actively braked rotors, and should be higher for free running rotors. The unbalance of the rotor plays a major role in the severity of rotor delevitation events. A rotor with a high unbalance usually tends to go into forward whirl, whereas low unbalance could promote the development of backward whirl if the inertia of the inner-race and the friction factor between the inner-race and the rotor are excessively large. Some of the recommended future work to be done on BBSim Include investigations into load sharing, various failure modes of AMBs, the effect that rotor circularity has on the stability of AMB control and an investigation into forward whirl. Envisaged improvements that can be made to BBSim are the inclusion of an axial rotor AMB and BB model, cross-coupled with the existing BBSim model. Other improvements could be the inclusion of thermal modelling and the ability to simulate other types of BBs. Future experimental work could include a comparison of simulated and experimental results of larger systems and using the developed quantification methods to refine the defined threshold values for the safe operation of AMB systems. / PhD, North-West University, Potchefstroom Campus, 2014 / Appendix C is attached seperately because of the size of the pdf (920 MB). If it is too large to download, please loan the hardcopy with the CD from the Loan desk in the Ferdinand Postma Library.

Page generated in 0.0604 seconds