• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design Space Exploration of MobileNet for Suitable Hardware Deployment

DEBJYOTI SINHA (8764737) 28 April 2020 (has links)
<p> Designing self-regulating machines that can see and comprehend various real world objects around it are the main purpose of the AI domain. Recently, there has been marked advancements in the field of deep learning to create state-of-the-art DNNs for various CV applications. It is challenging to deploy these DNNs into resource-constrained micro-controller units as often they are quite memory intensive. Design Space Exploration is a technique which makes CNN/DNN memory efficient and more flexible to be deployed into resource-constrained hardware. MobileNet is small DNN architecture which was designed for embedded and mobile vision, but still researchers faced many challenges in deploying this model into resource limited real-time processors.</p><p> This thesis, proposes three new DNN architectures, which are developed using the Design Space Exploration technique. The state-of-the art MobileNet baseline architecture is used as foundation to propose these DNN architectures in this study. They are enhanced versions of the baseline MobileNet architecture. DSE techniques like data augmentation, architecture tuning, and architecture modification have been done to improve the baseline architecture. First, the Thin MobileNet architecture is proposed which uses more intricate block modules as compared to the baseline MobileNet. It is a compact, efficient and flexible architecture with good model accuracy. To get a more compact models, the KilobyteNet and the Ultra-thin MobileNet DNN architecture is proposed. Interesting techniques like channel depth alteration and hyperparameter tuning are introduced along-with some of the techniques used for designing the Thin MobileNet. All the models are trained and validated from scratch on the CIFAR-10 dataset. The experimental results (training and testing) can be visualized using the live accuracy and logloss graphs provided by the Liveloss package. The Ultra-thin MobileNet model is more balanced in terms of the model accuracy and model size out of the three and hence it is deployed into the NXP i.MX RT1060 embedded hardware unit for image classification application.</p>
2

Squeeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware Deployment

Naga Venkata Sai Ravi Teja Chappa (8742342) 22 April 2020 (has links)
<div>Convolution neural network is being used in field of autonomous driving vehicles or driver assistance systems (ADAS), and has achieved great success. Before the convolution neural network, traditional machine learning algorithms helped the driver assistance systems. Currently, there is a great exploration being done in architectures like MobileNet, SqueezeNext & SqueezeNet. It improved the CNN architectures and made it more suitable to implement on real-time embedded systems. </div><div> </div><div> This thesis proposes an efficient and a compact CNN to ameliorate the performance of existing CNN architectures. The intuition behind this proposed architecture is to supplant convolution layers with a more sophisticated block module and to develop a compact architecture with a competitive accuracy. Further, explores the bottleneck module and squeezenext basic block structure. The state-of-the-art squeezenext baseline architecture is used as a foundation to recreate and propose a high performance squeezenext architecture. The proposed architecture is further trained on the CIFAR-10 dataset from scratch. All the training and testing results are visualized with live loss and accuracy graphs. Focus of this thesis is to make an adaptable and a flexible model for efficient CNN performance which can perform better with the minimum tradeoff between model accuracy, size, and speed. Having a model size of 0.595MB along with accuracy of 92.60% and with a satisfactory training and validating speed of 9 seconds, this model can be deployed on real-time autonomous system platform such as Bluebox 2.0 by NXP.</div>
3

Squeeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware Deployment

Chappa, Naga Venkata Sai Raviteja 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Convolution neural network is being used in field of autonomous driving vehicles or driver assistance systems (ADAS), and has achieved great success. Before the convolution neural network, traditional machine learning algorithms helped the driver assistance systems. Currently, there is a great exploration being done in architectures like MobileNet, SqueezeNext & SqueezeNet. It improved the CNN architectures and made it more suitable to implement on real-time embedded systems. This thesis proposes an efficient and a compact CNN to ameliorate the performance of existing CNN architectures. The intuition behind this proposed architecture is to supplant convolution layers with a more sophisticated block module and to develop a compact architecture with a competitive accuracy. Further, explores the bottleneck module and squeezenext basic block structure. The state-of-the-art squeezenext baseline architecture is used as a foundation to recreate and propose a high performance squeezenext architecture. The proposed architecture is further trained on the CIFAR-10 dataset from scratch. All the training and testing results are visualized with live loss and accuracy graphs. Focus of this thesis is to make an adaptable and a flexible model for efficient CNN performance which can perform better with the minimum tradeoff between model accuracy, size, and speed. Having a model size of 0.595MB along with accuracy of 92.60% and with a satisfactory training and validating speed of 9 seconds, this model can be deployed on real-time autonomous system platform such as Bluebox 2.0 by NXP.
4

Design Space Exploration of MobileNet for Suitable Hardware Deployment

Sinha, Debjyoti 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Designing self-regulating machines that can see and comprehend various real world objects around it are the main purpose of the AI domain. Recently, there has been marked advancements in the field of deep learning to create state-of-the-art DNNs for various CV applications. It is challenging to deploy these DNNs into resource-constrained micro-controller units as often they are quite memory intensive. Design Space Exploration is a technique which makes CNN/DNN memory efficient and more flexible to be deployed into resource-constrained hardware. MobileNet is small DNN architecture which was designed for embedded and mobile vision, but still researchers faced many challenges in deploying this model into resource limited real-time processors. This thesis, proposes three new DNN architectures, which are developed using the Design Space Exploration technique. The state-of-the art MobileNet baseline architecture is used as foundation to propose these DNN architectures in this study. They are enhanced versions of the baseline MobileNet architecture. DSE techniques like data augmentation, architecture tuning, and architecture modification have been done to improve the baseline architecture. First, the Thin MobileNet architecture is proposed which uses more intricate block modules as compared to the baseline MobileNet. It is a compact, efficient and flexible architecture with good model accuracy. To get a more compact models, the KilobyteNet and the Ultra-thin MobileNet DNN architecture is proposed. Interesting techniques like channel depth alteration and hyperparameter tuning are introduced along-with some of the techniques used for designing the Thin MobileNet. All the models are trained and validated from scratch on the CIFAR-10 dataset. The experimental results (training and testing) can be visualized using the live accuracy and logloss graphs provided by the Liveloss package. The Ultra-thin MobileNet model is more balanced in terms of the model accuracy and model size out of the three and hence it is deployed into the NXP i.MX RT1060 embedded hardware unit for image classification application.

Page generated in 0.031 seconds