• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cover Rubbling and Stacking

Haynes, Teresa W., Keaton, Rodney 01 November 2020 (has links)
A pebble distribution places a nonnegative number of pebbles on the vertices of a graph G. In graph rubbling, the pebbles can be redistributed using pebbling and rubbling moves, typically with the goal of reaching some target pebble distribution. In graph pebbling, only the pebbling move is allowed. The cover pebbling number is the smallest k such that from any initial distribution of k pebbles, it is possible that after a series of pebbling moves there is at least one pebble on every vertex of G. The Cover Pebbling Theorem asserts that to determine the cover pebbling number of a graph, it is sufficient to consider the pebbling distributions that initially place all pebbles on a single vertex. In this paper, we prove a rubbling analogue of the Cover Pebbling Theorem, providing an answer to an open question of Belford and Sieben (2009). In addition, we prove a stronger version of the Cover Rubbling Theorem for trees.
2

Total Domination Cover Rubbling

Beeler, Robert A., Haynes, Teresa W., Henning, Michael A., Keaton, Rodney 15 September 2020 (has links)
Let G be a connected simple graph with vertex set V and a distribution of pebbles on the vertices of V. The total domination cover rubbling number of G is the minimum number of pebbles, so that no matter how they are distributed, it is possible that after a sequence of pebbling and rubbling moves, the set of vertices with pebbles is a total dominating set of G. We investigate total domination cover rubbling in graphs and determine bounds on the total domination cover rubbling number.
3

On t-Restricted Optimal Rubbling of Graphs

Murphy, Kyle 01 May 2017 (has links)
For a graph G = (V;E), a pebble distribution is defined as a mapping of the vertex set in to the integers, where each vertex begins with f(v) pebbles. A pebbling move takes two pebbles from some vertex adjacent to v and places one pebble on v. A rubbling move takes one pebble from each of two vertices that are adjacent to v and places one pebble on v. A vertex x is reachable under a pebbling distribution f if there exists some sequence of rubbling and pebbling moves that places a pebble on x. A pebbling distribution where every vertex is reachable is called a rubbling configuration. The t-restricted optimal rubbling number of G is the minimum number of pebbles required for a rubbling configuration where no vertex is initially assigned more than t pebbles. Here we present results on the 1-restricted optimal rubbling number and the 2- restricted optimal rubbling number.
4

Domination Cover Rubbling

Beeler, Robert A., Haynes, Teresa W., Keaton, Rodney 15 May 2019 (has links)
Let G be a connected simple graph with vertex set V and a distribution of pebbles on V. The domination cover rubbling number of G is the minimum number of pebbles, so that no matter how they are distributed, it is possible that after a sequence of pebbling and rubbling moves, the set of vertices with pebbles is a dominating set of G. We begin by characterizing the graphs having small domination cover rubbling numbers and determining the domination cover rubbling number of several common graph families. We then give a bound for the domination cover rubbling number of trees and characterize the extremal trees. Finally, we give bounds for the domination cover rubbling number of graphs in terms of their domination number and characterize a family of the graphs attaining this bound.
5

1-Restricted Optimal Rubbling on Graphs

Beeler, Robert A., Haynes, Teresa W., Murphy, Kyle 01 January 2019 (has links)
Let G be a graph with vertex set V and a distribution of pebbles on the vertices of V . A pebbling move consists of removing two pebbles from a vertex and placing one pebble on a neighboring vertex, and a rubbling move consists of removing a pebble from each of two neighbors of a vertex v and placing a pebble on v. We seek an initial placement of a minimum total number of pebbles on the vertices in V, so that no vertex receives more than one pebble and for any given vertex v ∈ V, it is possible, by a sequence of pebbling and rubbling moves, to move at least one pebble to v. This minimum number of pebbles is the 1-restricted optimal rubbling number. We determine the 1-restricted optimal rubbling numbers for Cartesian products. We also present bounds on the 1-restricted optimal rubbling number.
6

Roman Domination Cover Rubbling

Carney, Nicholas 01 August 2019 (has links)
In this thesis, we introduce Roman domination cover rubbling as an extension of domination cover rubbling. We define a parameter on a graph $G$ called the \textit{Roman domination cover rubbling number}, denoted $\rho_{R}(G)$, as the smallest number of pebbles, so that from any initial configuration of those pebbles on $G$, it is possible to obtain a configuration which is Roman dominating after some sequence of pebbling and rubbling moves. We begin by characterizing graphs $G$ having small $\rho_{R}(G)$ value. Among other things, we also obtain the Roman domination cover rubbling number for paths and give an upper bound for the Roman domination cover rubbling number of a tree.

Page generated in 0.054 seconds