• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INFLUENCE OF ERGOT ALKALOIDS ON RUMEN MOTILITY: TIME AND CONCENTRATION OF ERGOVALINE + ERGOVALININE REQUIRED TO IMPACT RETICULORUMEN MOTILITY

Riccioni, Kara 01 January 2017 (has links)
Fescue toxicosis is problematic for ruminant livestock, causing weight loss and low productivity when fed endophyte-infected forages. Complete underlying mechanisms of toxicosis are unknown therefore; the objective of the study was to determine if ruminally dosed ergot alkaloids impact rumen motility. Cannulated steers were pair-fed a forage diet and ruminally dosed with endophyte-free (E-) or endophyte-infected (E+) tall fescue seed. An 8-h period of rumen motility collection began 4-h after feeding by monitoring pressure change via a wireless telemetry and transducer system. In experiment 1, steers were paired by weight and assigned to E- or E+ treatment. Overall, E+ steers had more frequent contractions. On d 7 - 9, both treatments had lower frequencies and E- steers had greater amplitude of contractions, which corresponded with decreased DM intake. In experiment 2 steers remained in pair, but switched treatment. During the 57 d E+ steers received titrated levels of ergovaline + ergovalinine. There was no difference between treatments for frequency or amplitude of contractions, but increasing dosage, decreased frequency (d 1 - 44) and amplitude, coinciding with lower DM intakes. Alteration in rumen motility associated with changes in intake may be responsible for the decreased productivity in ruminants consuming E+ forages.

Page generated in 0.0828 seconds