1 |
Možnosti využití nízko objemového rezistentního tréninku pro ovlivnění funkčních a morfologických parametrů u rekreačních běžkyň / Effects of minimal dose of resistance training on body composition and running performance in female recreational runnersŠtohanzl, Michal January 2019 (has links)
Title: Effects of minimal dose of resistance training on body composition and running performance in female recreational runners Objective: The purpose of this study was to analyse the extent to which minimal dose resistance training would elicit improvements in running performance and body composition for female recreational runners. Methods: Forty-one female recreational runners were randomly assigned to one of three groups (endurance running [V] n=14; combined endurance running and resistance training program once [VR30] n=14 and twice a week [VR60] n=13, respectively). During the 10-week training program, the V group completed 3 hours of continuous endurance running per week; VR30 completed 2 ½ hours of continuous endurance running and 1 x 30 min of resistance training per week, while VR60 group completed 2 hours of continuous endurance running and 2x30 min of resistance training per week. Body composition (FM, FFM, ECM/BCM), standing long jump, running economy, ventilatory anaerobic threshold and maximal endurance performance characteristics were assessed using ANOVA with repeated measures. Body composition was assessed via whole-body bio impedance. Performance parameters were determined during running on a treadmill. Results: Thirty-one female recreational runners completed 10-week...
|
2 |
Energy Consumption and Running Time for Trains : modelling of running resistance and driver behaviour based on full scale testingLukaszewicz, Piotr January 2001 (has links)
The accuracy in determined energy consumption and runningtime of trains, by means of computer simulation, is dependent upon the various models used. This thesis aims at developing validated models of running resistance, train and of a generaldriver, all based on full scale testing. A partly new simple methodology for determining running resistance, called by energy coasting method is developed and demonstrated. An error analysis for this methodis performed. Running resistance of high speed train SJ X2000, conventional loco hauled passenger trains and freight trains is systematically parameterised. Influence of speed, number of axles, axle load, track type, train length,and train configuration is studied. A model taking into account the ground boundary layer for determining the influence ofmeasured head and tail wind is developed. Different factors and parameters of a train, that are vital for the accuracy in computed energy consumption and runningtime are identified, analysed and finally synthesized into a train model. Empirical models of the braking and the traction system, including the energy efficiency, are developed for the electrical locomotive of typeSJ Rc4, without energy regeneration. Driver behaviour is studied for freight trains and a couple of driving describing parametersare proposed. An empirical model of freight train driver behaviour is developed from fullscale testing and observations. A computer program, a simulator, is developed in Matlabcode, making use of the determined runningresistance and the developed models of train and driver. The simulator calculates the energy consumption and running time ofa single train. Comparisons between simulations and corresponding measurements are made. Finally, the influence of driving on energy consumption and running time is studied and demonstrated in some examples. The main conclusions are that: The method developed for determining running resistanceis quite simple and accurate. It can be used on any train andon any track. The running resistance of tested trains includes some interesting knowledge which is partly believed to be new. Mechanical running resistance is less than proportional to the actual axle load. Air drag increases approximately linearly with train length and the effect of measured head and tail wind on the air drag can be calculated if the groundboundary layer is considered. The developed train model, including running resistance, traction, braking etc. is quite accurate, as verified for the investigated trains. The driver model together with the train model insimulations, is verified against measurements and shows good agreement for energy consumption and running time. It is recommended to use a driver model, when calculating energy consumption and running times for trains. Otherwise, the energy consumption will most likely be over-estimated.This has been demonstrated for Swedish ordinary freighttrains. / QC 20100526
|
3 |
Online Identification of Running Resistance and Available Adhesion of Trains / Online identifiering av tågs gångmotstånd och tillgänglig adhesionAhlberg, Jesper, Blomquist, Esbjörn January 2011 (has links)
Two important physical aspects that determine the performance of a running train are the total running resistance that acts on the whole train moving forward, and the available adhesion (utilizable wheel-rail-friction) for propulsion and breaking. Using the measured and available signals, online identification of the current running resistance and available adhesion and also prediction of future values for a distance ahead of the train, is desired. With the aim to enhance the precision of those calculations, this thesis investigates the potential of online identification and prediction utilizing the Extended Kalman Filter. The conclusions are that problems with observability and sensitivity arise, which result in a need for sophisticated methods to numerically derive the acceleration from the velocity signal. The smoothing spline approximation is shown to provide the best results for this numerical differentiation. Sensitivity and its need for high accuracy, especially in the acceleration signal, results in a demand of higher sample frequency. A desire for other profound ways of collecting further information, or to enhance the models, arises with possibilities of future work in the field. / Två viktiga fysikaliska aspekter som bestämmer prestandan för ett tåg i drift är det totala gångmotståndet som verkar på hela tåget, samt den tillgängliga adhesionen (användbara hjul-räl-friktionen) för framdrivning och bromsning. Från de tillgängliga signalerna önskas identifiering, samt prediktering, av dessa två storheter, under drift. Med målet att förbättra precisionen av dessa skattningar undersöker detta examensarbete potentialen av skattning och prediktering av gångmotstånd och adhesion med hjälp av Extended KalmanFiltering. Slutsatsen är att problem med observerbarhet och känslighet uppstår, vilket resulterar i ett behov av sofistikerade metoder att numeriskt beräkna acceleration från en hastighetssignal. Metoden smoothing spline approximation visar sig ge de bästa resultaten för denna numeriska derivering. Känsligheten och dess medförda krav på hög precision, speciellt på accelerationssignalen, resulterar i ett behov av högre samplingsfrekvens. Ett behov av andra adekvata metoder att tillföra ytterligare information, eller att förbättra modellerna, ger upphov till möjliga framtida utredningar inom området.
|
Page generated in 0.0816 seconds