• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CNI-1493 inhibits Aβ production, plaque formation, and cognitive deterioration in an animal model of Alzheimer's disease

Bacher, Michael, Dodel, Richard, Aljabari, Bayan, Keyvani, Kathy, Marambaud, Phillippe, Kayed, Rakez, Glabe, Charles, Goertz, Nicole, Hoppmann, Anne, Sachser, Norbert, Klotsche, Jens, Schnell, Susanne, Lewejohann, Lars, Al-Abed, Yousef 03 December 2012 (has links) (PDF)
Alzheimer's disease (AD) is characterized by neuronal atrophy caused by soluble amyloid β protein (Aβ) peptide "oligomers" and a microglial-mediated inflammatory response elicited by extensive amyloid deposition in the brain. We show that CNI-1493, a tetravalent guanylhydrazone with established antiinflammatory properties, interferes with Aβ assembly and protects neuronal cells from the toxic effect of soluble Aβ oligomers. Administration of CNI-1493 to TgCRND8 mice overexpressing human amyloid precursor protein (APP) for a treatment period of 8 wk significantly reduced Aβ deposition. CNI-1493 treatment resulted in 70% reduction of amyloid plaque area in the cortex and 87% reduction in the hippocampus of these animals. Administration of CNI-1493 significantly improved memory performance in a cognition task compared with vehicle-treated mice. In vitro analysis of CNI-1493 on APP processing in an APP-overexpressing cell line revealed a significant dose-dependent decrease of total Aβ accumulation. This study indicates that the antiinflammatory agent CNI-1493 can ameliorate the pathophysiology and cognitive defects in a murine model of AD.

Page generated in 0.0152 seconds