• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SIMD-Swift: Improving Performance of Swift Fault Detection

Oleksenko, Oleksii 20 January 2016 (has links) (PDF)
The general tendency in modern hardware is an increase in fault rates, which is caused by the decreased operation voltages and feature sizes. Previously, the issue of hardware faults was mainly approached only in high-availability enterprise servers and in safety-critical applications, such as transport or aerospace domains. These fields generally have very tight requirements, but also higher budgets. However, as fault rates are increasing, fault tolerance solutions are starting to be also required in applications that have much smaller profit margins. This brings to the front the idea of software-implemented hardware fault tolerance, that is, the ability to detect and tolerate hardware faults using software-based techniques in commodity CPUs, which allows to get resilience almost for free. Current solutions, however, are lacking in performance, even though they show quite good fault tolerance results. This thesis explores the idea of using the Single Instruction Multiple Data (SIMD) technology for executing all program\'s operations on two copies of the same data. This idea is based on the observation that SIMD is ubiquitous in modern CPUs and is usually an underutilized resource. It allows us to detect bit-flips in hardware by a simple comparison of two copies under the assumption that only one copy is affected by a fault. We implemented this idea as a source-to-source compiler which performs hardening of a program on the source code level. The evaluation of our several implementations shows that it is beneficial to use it for applications that are dominated by arithmetic or logical operations, but those that have more control-flow or memory operations are actually performing better with the regular instruction replication. For example, we managed to get only 15% performance overhead on Fast Fourier Transformation benchmark, which is dominated by arithmetic instructions, but memory-access-dominated Dijkstra algorithm has shown a high overhead of 200%.
2

Comparison and End-to-End Performance Analysis of Parallel Filesystems

Kluge, Michael 20 September 2011 (has links) (PDF)
This thesis presents a contribution to the field of performance analysis for Input/Output (I/O) related problems, focusing on the area of High Performance Computing (HPC). Beside the compute nodes, High Performance Computing systems need a large amount of supporting components that add their individual behavior to the overall performance characteristic of the whole system. Especially file systems in such environments have their own infrastructure. File operations are typically initiated at the compute nodes and proceed through a deep software stack until the file content arrives at the physical medium. There is a handful of shortcomings that characterize the current state of the art for performance analyses in this area. This includes a system wide data collection, a comprehensive analysis approach for all collected data, an adjusted trace event analysis for I/O related problems, and methods to compare current with archived performance data. This thesis proposes to instrument all soft- and hardware layers to enhance the performance analysis for file operations. The additional information can be used to investigate performance characteristics of parallel file systems. To perform I/O analyses on HPC systems, a comprehensive approach is needed to gather related performance events, examine the collected data and, if necessary, to replay relevant parts on different systems. One larger part of this thesis is dedicated to algorithms that reduce the amount of information that are found in trace files to the level that is needed for an I/O analysis. This reduction is based on the assumption that for this type of analysis all I/O events, but only a subset of all synchronization events of a parallel program trace have to be considered. To extract an I/O pattern from an event trace, only these synchronization points are needed that describe dependencies among different I/O requests. Two algorithms are developed to remove negligible events from the event trace. Considering the related work for the analysis of a parallel file systems, the inclusion of counter data from external sources, e.g. the infrastructure of a parallel file system, has been identified as a major milestone towards a holistic analysis approach. This infrastructure contains a large amount of valuable information that are essential to describe performance effects observed in applications. This thesis presents an approach to collect and subsequently process and store the data. Certain ways how to correctly merge the collected values with application traces are discussed. Here, a revised definition of the term "performance counter" is the first step followed by a tree based approach to combine raw values into secondary values. A visualization approach for I/O patterns closes another gap in the analysis process. Replaying I/O related performance events or event patterns can be done by a flexible I/O benchmark. The constraints for the development of such a benchmark are identified as well as the overall architecture for a prototype implementation. Finally, different examples demonstrate the usage of the developed methods and show their potential. All examples are real use cases and are situated on the HRSK research complex and the 100GBit Testbed at TU Dresden. The I/O related parts of a Bioinformatics and a CFD application have been analyzed in depth and enhancements for both are proposed. An instance of a Lustre file system was deployed and tuned on the 100GBit Testbed by the extensive use of external performance counters.
3

Runtime MPI Correctness Checking with a Scalable Tools Infrastructure

Hilbrich, Tobias 24 February 2016 (has links) (PDF)
Increasing computational demand of simulations motivates the use of parallel computing systems. At the same time, this parallelism poses challenges to application developers. The Message Passing Interface (MPI) is a de-facto standard for distributed memory programming in high performance computing. However, its use also enables complex parallel programing errors such as races, communication errors, and deadlocks. Automatic tools can assist application developers in the detection and removal of such errors. This thesis considers tools that detect such errors during an application run and advances them towards a combination of both precise checks (neither false positives nor false negatives) and scalability. This includes novel hierarchical checks that provide scalability, as well as a formal basis for a distributed deadlock detection approach. At the same time, the development of parallel runtime tools is challenging and time consuming, especially if scalability and portability are key design goals. Current tool development projects often create similar tool components, while component reuse remains low. To provide a perspective towards more efficient tool development, which simplifies scalable implementations, component reuse, and tool integration, this thesis proposes an abstraction for a parallel tools infrastructure along with a prototype implementation. This abstraction overcomes the use of multiple interfaces for different types of tool functionality, which limit flexible component reuse. Thus, this thesis advances runtime error detection tools and uses their redesign and their increased scalability requirements to apply and evaluate a novel tool infrastructure abstraction. The new abstraction ultimately allows developers to focus on their tool functionality, rather than on developing or integrating common tool components. The use of such an abstraction in wide ranges of parallel runtime tool development projects could greatly increase component reuse. Thus, decreasing tool development time and cost. An application study with up to 16,384 application processes demonstrates the applicability of both the proposed runtime correctness concepts and of the proposed tools infrastructure.
4

Trace-based Performance Analysis for Hardware Accelerators / Leistungsanalyse hardwarebeschleunigter Anwendungen mittels Programmspuren

Juckeland, Guido 14 February 2013 (has links) (PDF)
This thesis presents how performance data from hardware accelerators can be included in event logs. It extends the capabilities of trace-based performance analysis to also monitor and record data from this novel parallelization layer. The increasing awareness to power consumption of computing devices has led to an interest in hybrid computing architectures as well. High-end computers, workstations, and mobile devices start to employ hardware accelerators to offload computationally intense and parallel tasks, while at the same time retaining a highly efficient scalar compute unit for non-parallel tasks. This execution pattern is typically asynchronous so that the scalar unit can resume other work while the hardware accelerator is busy. Performance analysis tools provided by the hardware accelerator vendors cover the situation of one host using one device very well. Yet, they do not address the needs of the high performance computing community. This thesis investigates ways to extend existing methods for recording events from highly parallel applications to also cover scenarios in which hardware accelerators aid these applications. After introducing a generic approach that is suitable for any API based acceleration paradigm, the thesis derives a suggestion for a generic performance API for hardware accelerators and its implementation with NVIDIA CUPTI. In a next step the visualization of event logs containing data from execution streams on different levels of parallelism is discussed. In order to overcome the limitations of classic performance profiles and timeline displays, a graph-based visualization using Parallel Performance Flow Graphs (PPFGs) is introduced. This novel technical approach is using program states in order to display similarities and differences between the potentially very large number of event streams and, thus, enables a fast way to spot load imbalances. The thesis concludes with the in-depth analysis of a case-study of PIConGPU---a highly parallel, multi-hybrid plasma physics simulation---that benefited greatly from the developed performance analysis methods. / Diese Dissertation zeigt, wie der Ablauf von Anwendungsteilen, die auf Hardwarebeschleuniger ausgelagert wurden, als Programmspur mit aufgezeichnet werden kann. Damit wird die bekannte Technik der Leistungsanalyse von Anwendungen mittels Programmspuren so erweitert, dass auch diese neue Parallelitätsebene mit erfasst wird. Die Beschränkungen von Computersystemen bezüglich der elektrischen Leistungsaufnahme hat zu einer steigenden Anzahl von hybriden Computerarchitekturen geführt. Sowohl Hochleistungsrechner, aber auch Arbeitsplatzcomputer und mobile Endgeräte nutzen heute Hardwarebeschleuniger um rechenintensive, parallele Programmteile auszulagern und so den skalaren Hauptprozessor zu entlasten und nur für nicht parallele Programmteile zu verwenden. Dieses Ausführungsschema ist typischerweise asynchron: der Skalarprozessor kann, während der Hardwarebeschleuniger rechnet, selbst weiterarbeiten. Die Leistungsanalyse-Werkzeuge der Hersteller von Hardwarebeschleunigern decken den Standardfall (ein Host-System mit einem Hardwarebeschleuniger) sehr gut ab, scheitern aber an einer Unterstützung von hochparallelen Rechnersystemen. Die vorliegende Dissertation untersucht, in wie weit auch multi-hybride Anwendungen die Aktivität von Hardwarebeschleunigern aufzeichnen können. Dazu wird die vorhandene Methode zur Erzeugung von Programmspuren für hochparallele Anwendungen entsprechend erweitert. In dieser Untersuchung wird zuerst eine allgemeine Methodik entwickelt, mit der sich für jede API-gestützte Hardwarebeschleunigung eine Programmspur erstellen lässt. Darauf aufbauend wird eine eigene Programmierschnittstelle entwickelt, die es ermöglicht weitere leistungsrelevante Daten aufzuzeichnen. Die Umsetzung dieser Schnittstelle wird am Beispiel von NVIDIA CUPTI darstellt. Ein weiterer Teil der Arbeit beschäftigt sich mit der Darstellung von Programmspuren, welche Aufzeichnungen von den unterschiedlichen Parallelitätsebenen enthalten. Um die Einschränkungen klassischer Leistungsprofile oder Zeitachsendarstellungen zu überwinden, wird mit den parallelen Programmablaufgraphen (PPFGs) eine neue graphenbasisierte Darstellungsform eingeführt. Dieser neuartige Ansatz zeigt eine Programmspur als eine Folge von Programmzuständen mit gemeinsamen und unterchiedlichen Abläufen. So können divergierendes Programmverhalten und Lastimbalancen deutlich einfacher lokalisiert werden. Die Arbeit schließt mit der detaillierten Analyse von PIConGPU -- einer multi-hybriden Simulation aus der Plasmaphysik --, die in großem Maße von den in dieser Arbeit entwickelten Analysemöglichkeiten profiert hat.
5

Advanced Memory Data Structures for Scalable Event Trace Analysis

Knüpfer, Andreas 17 April 2009 (has links) (PDF)
The thesis presents a contribution to the analysis and visualization of computational performance based on event traces with a particular focus on parallel programs and High Performance Computing (HPC). Event traces contain detailed information about specified incidents (events) during run-time of programs and allow minute investigation of dynamic program behavior, various performance metrics, and possible causes of performance flaws. Due to long running and highly parallel programs and very fine detail resolutions, event traces can accumulate huge amounts of data which become a challenge for interactive as well as automatic analysis and visualization tools. The thesis proposes a method of exploiting redundancy in the event traces in order to reduce the memory requirements and the computational complexity of event trace analysis. The sources of redundancy are repeated segments of the original program, either through iterative or recursive algorithms or through SPMD-style parallel programs, which produce equal or similar repeated event sequences. The data reduction technique is based on the novel Complete Call Graph (CCG) data structure which allows domain specific data compression for event traces in a combination of lossless and lossy methods. All deviations due to lossy data compression can be controlled by constant bounds. The compression of the CCG data structure is incorporated in the construction process, such that at no point substantial uncompressed parts have to be stored. Experiments with real-world example traces reveal the potential for very high data compression. The results range from factors of 3 to 15 for small scale compression with minimum deviation of the data to factors > 100 for large scale compression with moderate deviation. Based on the CCG data structure, new algorithms for the most common evaluation and analysis methods for event traces are presented, which require no explicit decompression. By avoiding repeated evaluation of formerly redundant event sequences, the computational effort of the new algorithms can be reduced in the same extent as memory consumption. The thesis includes a comprehensive discussion of the state-of-the-art and related work, a detailed presentation of the design of the CCG data structure, an elaborate description of algorithms for construction, compression, and analysis of CCGs, and an extensive experimental validation of all components. / Diese Dissertation stellt einen neuartigen Ansatz für die Analyse und Visualisierung der Berechnungs-Performance vor, der auf dem Ereignis-Tracing basiert und insbesondere auf parallele Programme und das Hochleistungsrechnen (High Performance Computing, HPC) zugeschnitten ist. Ereignis-Traces (Ereignis-Spuren) enthalten detaillierte Informationen über spezifizierte Ereignisse während der Laufzeit eines Programms und erlauben eine sehr genaue Untersuchung des dynamischen Verhaltens, verschiedener Performance-Metriken und potentieller Performance-Probleme. Aufgrund lang laufender und hoch paralleler Anwendungen und dem hohen Detailgrad kann das Ereignis-Tracing sehr große Datenmengen produzieren. Diese stellen ihrerseits eine Herausforderung für interaktive und automatische Analyse- und Visualisierungswerkzeuge dar. Die vorliegende Arbeit präsentiert eine Methode, die Redundanzen in den Ereignis-Traces ausnutzt, um sowohl die Speicheranforderungen als auch die Laufzeitkomplexität der Trace-Analyse zu reduzieren. Die Ursachen für Redundanzen sind wiederholt ausgeführte Programmabschnitte, entweder durch iterative oder rekursive Algorithmen oder durch SPMD-Parallelisierung, die gleiche oder ähnliche Ereignis-Sequenzen erzeugen. Die Datenreduktion basiert auf der neuartigen Datenstruktur der "Vollständigen Aufruf-Graphen" (Complete Call Graph, CCG) und erlaubt eine Kombination von verlustfreier und verlustbehafteter Datenkompression. Dabei können konstante Grenzen für alle Abweichungen durch verlustbehaftete Kompression vorgegeben werden. Die Datenkompression ist in den Aufbau der Datenstruktur integriert, so dass keine umfangreichen unkomprimierten Teile vor der Kompression im Hauptspeicher gehalten werden müssen. Das enorme Kompressionsvermögen des neuen Ansatzes wird anhand einer Reihe von Beispielen aus realen Anwendungsszenarien nachgewiesen. Die dabei erzielten Resultate reichen von Kompressionsfaktoren von 3 bis 5 mit nur minimalen Abweichungen aufgrund der verlustbehafteten Kompression bis zu Faktoren > 100 für hochgradige Kompression. Basierend auf der CCG_Datenstruktur werden außerdem neue Auswertungs- und Analyseverfahren für Ereignis-Traces vorgestellt, die ohne explizite Dekompression auskommen. Damit kann die Laufzeitkomplexität der Analyse im selben Maß gesenkt werden wie der Hauptspeicherbedarf, indem komprimierte Ereignis-Sequenzen nicht mehrmals analysiert werden. Die vorliegende Dissertation enthält eine ausführliche Vorstellung des Stands der Technik und verwandter Arbeiten in diesem Bereich, eine detaillierte Herleitung der neu eingeführten Daten-strukturen, der Konstruktions-, Kompressions- und Analysealgorithmen sowie eine umfangreiche experimentelle Auswertung und Validierung aller Bestandteile.
6

Formale Analyse- und Verifikationsparadigmen für ausgewählte verteilte Splicing-Systeme

Hofmann, Christian 17 November 2008 (has links) (PDF)
DNA-basierte Systeme beschreiben formal ein alternatives Berechnungskonzept, beruhend auf der Anwendung molekularbiologischer Operationen. Der Grundgedanke ist dabei die Entwicklung alternativer und universeller Rechnerarchitekturen. Infolge der zugrunde liegenden maximalen Parallelität sowie der hohen Komplexität entsprechender Systeme ist die Korrektheit jedoch schwer zu beweisen. Um dies zu ermöglichen werden in der Arbeit zunächst für drei verschiedene Systemklassen mit unterschiedlichen Berechnungsparadigmen strukturelle operationelle Semantiken definiert und bekannte Formalismen der Prozesstheorie adaptiert. Nachfolgend werden Tableaubeweissysteme beschrieben, mithilfe derer einerseits Invarianten und andererseits die jeweilige Korrektheit von DNA-basierten Systemen mit universeller Berechnungsstärke bewiesen werden können. Durch Anwendung dieser Konzepte konnte für drei universelle Systeme die Korrektheit gezeigt und für ein System widerlegt werden.
7

Concepts for In-memory Event Tracing

Wagner, Michael 14 July 2015 (has links) (PDF)
This thesis contributes to the field of performance analysis in High Performance Computing with new concepts for in-memory event tracing. Event tracing records runtime events of an application and stores each with a precise time stamp and further relevant metrics. The high resolution and detailed information allows an in-depth analysis of the dynamic program behavior, interactions in parallel applications, and potential performance issues. For long-running and large-scale parallel applications, event-based tracing faces three challenges, yet unsolved: the number of resulting trace files limits scalability, the huge amounts of collected data overwhelm file systems and analysis capabilities, and the measurement bias, in particular, due to intermediate memory buffer flushes prevents a correct analysis. This thesis proposes concepts for an in-memory event tracing workflow. These concepts include new enhanced encoding techniques to increase memory efficiency and novel strategies for runtime event reduction to dynamically adapt trace size during runtime. An in-memory event tracing workflow based on these concepts meets all three challenges: First, it not only overcomes the scalability limitations due to the number of resulting trace files but eliminates the overhead of file system interaction altogether. Second, the enhanced encoding techniques and event reduction lead to remarkable smaller trace sizes. Finally, an in-memory event tracing workflow completely avoids intermediate memory buffer flushes, which minimizes measurement bias and allows a meaningful performance analysis. The concepts further include the Hierarchical Memory Buffer data structure, which incorporates a multi-dimensional, hierarchical ordering of events by common metrics, such as time stamp, calling context, event class, and function call duration. This hierarchical ordering allows a low-overhead event encoding, event reduction and event filtering, as well as new hierarchy-aided analysis requests. An experimental evaluation based on real-life applications and a detailed case study underline the capabilities of the concepts presented in this thesis. The new enhanced encoding techniques reduce memory allocation during runtime by a factor of 3.3 to 7.2, while at the same do not introduce any additional overhead. Furthermore, the combined concepts including the enhanced encoding techniques, event reduction, and a new filter based on function duration within the Hierarchical Memory Buffer remarkably reduce the resulting trace size up to three orders of magnitude and keep an entire measurement within a single fixed-size memory buffer, while still providing a coarse but meaningful analysis of the application. This thesis includes a discussion of the state-of-the-art and related work, a detailed presentation of the enhanced encoding techniques, the event reduction strategies, the Hierarchical Memory Buffer data structure, and a extensive experimental evaluation of all concepts.

Page generated in 0.0256 seconds