1 |
Identifiability in Knowledge Space Theory: a survey of recent resultsDoignon, Jean-Paul 28 May 2013 (has links) (PDF)
Knowledge Space Theory (KST) links in several ways to Formal Concept Analysis (FCA). Recently, the probabilistic and statistical aspects of KST have been further developed by several authors. We review part of the recent results, and describe some of the open problems. The question of whether the outcomes can be useful in FCA remains to be investigated.
|
2 |
FCART: A New FCA-based System for Data Analysis and Knowledge DiscoveryNeznanov, Alexey A., Ilvovsky, Dmitry A., Kuznetsov, Sergei O. 28 May 2013 (has links) (PDF)
We introduce a new software system called Formal Concept Analysis Research Toolbox (FCART). Our goal is to create a universal integrated environment for knowledge and data engineers. FCART is constructed upon an iterative data analysis methodology and provides a built-in set of research tools based on Formal Concept Analysis techniques for working with object-attribute data representations. The provided toolset allows for the fast integration of extensions on several levels: from internal scripts to plugins.
FCART was successfully applied in several data mining and knowledge discovery tasks. Examples of applying the system in medicine and criminal investigations are considered.
|
3 |
Action Logic ProgramsDrescher, Conrad 12 May 2011 (has links) (PDF)
We discuss a new concept of agent programs that combines logic programming with reasoning about actions. These agent logic programs are characterized by a clear separation between the specification of the agent’s strategic behavior and the underlying theory about the agent’s actions and their effects. This makes it a generic, declarative agent programming language, which can be combined with an action representation formalism of one’s choice. We present a declarative semantics for agent logic programs along with (two versions of) a sound and complete operational semantics, which combines the standard inference mechanisms for (constraint) logic programs with reasoning about actions.
|
4 |
Attribute Exploration on the WebJäschke, Robert, Rudolph, Sebastian 28 May 2013 (has links) (PDF)
We propose an approach for supporting attribute exploration by web information retrieval, in particular by posing appropriate queries to search engines, crowd sourcing systems, and the linked open data cloud. We discuss underlying general assumptions for this to work and the degree to which these can be taken for granted.
|
5 |
To and Fro Between Tableaus and Automata for Description LogicsHladik, Jan 31 January 2008 (has links) (PDF)
Beschreibungslogiken (Description logics, DLs) sind eine Klasse von Wissensrepraesentationsformalismen mit wohldefinierter, logik-basierter Semantik und entscheidbaren Schlussfolgerungsproblemen, wie z.B. dem Erfuellbarkeitsproblem. Zwei wichtige Entscheidungsverfahren fuer das Erfuellbarkeitsproblem von DL-Ausdruecken sind Tableau- und Automaten-basierte Algorithmen. Diese haben aufgrund ihrer unterschiedlichen Arbeitsweise komplementaere Eigenschaften: Tableau-Algorithmen eignen sich fuer Implementierungen und fuer den Nachweis von PSPACE- und NEXPTIME-Resultaten, waehrend Automaten sich besonders fuer EXPTIME-Resultate anbieten. Zudem ermoeglichen sie eine vom Standpunkt der Theorie aus elegantere Handhabung von unendlichen Strukturen, eignen sich aber wesentlich schlechter fuer eine Implementierung. Ziel der Dissertation ist es, die Gruende fuer diese Unterschiede zu analysieren und Moeglichkeiten aufzuzeigen, wie Eigenschaften von einem Ansatz auf den anderen uebertragen werden koennen, um so die positiven Eigenschaften von beiden Ansaetzen miteinander zu verbinden. Unter Anderem werden Methoden entwickelt, mit Hilfe von Automaten PSPACE-Resultate zu zeigen, und von einem Tableau-Algorithmus automatisch ein EXPTIME-Resultat abzuleiten. / Description Logics (DLs) are a family of knowledge representation languages with well-defined logic-based semantics and decidable inference problems, e.g. satisfiability. Two of the most widely used decision procedures for the satisfiability problem are tableau- and automata-based algorithms. Due to their different operation, these two classes have complementary properties: tableau algorithms are well-suited for implementation and for showing PSPACE and NEXPTIME complexity results, whereas automata algorithms are particularly useful for showing EXPTIME results. Additionally, they allow for an elegant handling of infinite structures, but they are not suited for implementation. The aim of this thesis is to analyse the reasons for these differences and to find ways of transferring properties between the two approaches in order to reconcile the positive properties of both. For this purpose, we develop methods that enable us to show PSPACE results with the help of automata and to automatically derive an EXPTIME result from a tableau algorithm.
|
6 |
GoPubMed: Ontology-based literature search for the life sciences / GoPubMed: ontologie-basierte Literatursuche für die LebenswissenschaftenDoms, Andreas 20 January 2009 (has links) (PDF)
Background: Most of our biomedical knowledge is only accessible through texts. The biomedical literature grows exponentially and PubMed comprises over 18.000.000 literature abstracts. Recently much effort has been put into the creation of biomedical ontologies which capture biomedical facts. The exploitation of ontologies to explore the scientific literature is a new area of research. Motivation: When people search, they have questions in mind. Answering questions in a domain requires the knowledge of the terminology of that domain. Classical search engines do not provide background knowledge for the presentation of search results. Ontology annotated structured databases allow for data-mining. The hypothesis is that ontology annotated literature databases allow for text-mining. The central problem is to associate scientific publications with ontological concepts. This is a prerequisite for ontology-based literature search. The question then is how to answer biomedical questions using ontologies and a literature corpus. Finally the task is to automate bibliometric analyses on an corpus of scientific publications. Approach: Recent joint efforts on automatically extracting information from free text showed that the applied methods are complementary. The idea is to employ the rich terminological and relational information stored in biomedical ontologies to markup biomedical text documents. Based on established semantic links between documents and ontology concepts the goal is to answer biomedical question on a corpus of documents. The entirely annotated literature corpus allows for the first time to automatically generate bibliometric analyses for ontological concepts, authors and institutions. Results: This work includes a novel annotation framework for free texts with ontological concepts. The framework allows to generate recognition patterns rules from the terminological and relational information in an ontology. Maximum entropy models can be trained to distinguish the meaning of ambiguous concept labels. The framework was used to develop a annotation pipeline for PubMed abstracts with 27,863 Gene Ontology concepts. The evaluation of the recognition performance yielded a precision of 79.9% and a recall of 72.7% improving the previously used algorithm by 25,7% f-measure. The evaluation was done on a manually created (by the original authors) curation corpus of 689 PubMed abstracts with 18,356 curations of concepts. Methods to reason over large amounts of documents with ontologies were developed. The ability to answer questions with the online system was shown on a set of biomedical question of the TREC Genomics Track 2006 benchmark. This work includes the first ontology-based, large scale, online available, up-to-date bibliometric analysis for topics in molecular biology represented by GO concepts. The automatic bibliometric analysis is in line with existing, but often out-dated, manual analyses. Outlook: A number of promising continuations starting from this work have been spun off. A freely available online search engine has a growing user community. A spin-off company was funded by the High-Tech Gründerfonds which commercializes the new ontology-based search paradigm. Several off-springs of GoPubMed including GoWeb (general web search), Go3R (search in replacement, reduction, refinement methods for animal experiments), GoGene (search in gene/protein databases) are developed.
|
7 |
Belief Change in Reasoning Agents / Axiomatizations, Semantics and ComputationsJin, Yi 26 January 2007 (has links) (PDF)
The capability of changing beliefs upon new information in a rational and efficient way is crucial for an intelligent agent. Belief change therefore is one of the central research fields in Artificial Intelligence (AI) for over two decades. In the AI literature, two different kinds of belief change operations have been intensively investigated: belief update, which deal with situations where the new information describes changes of the world; and belief revision, which assumes the world is static. As another important research area in AI, reasoning about actions mainly studies the problem of representing and reasoning about effects of actions. These two research fields are closely related and apply a common underlying principle, that is, an agent should change its beliefs (knowledge) as little as possible whenever an adjustment is necessary. This lays down the possibility of reusing the ideas and results of one field in the other, and vice verse. This thesis aims to develop a general framework and devise computational models that are applicable in reasoning about actions. Firstly, I shall propose a new framework for iterated belief revision by introducing a new postulate to the existing AGM/DP postulates, which provides general criteria for the design of iterated revision operators. Secondly, based on the new framework, a concrete iterated revision operator is devised. The semantic model of the operator gives nice intuitions and helps to show its satisfiability of desirable postulates. I also show that the computational model of the operator is almost optimal in time and space-complexity. In order to deal with the belief change problem in multi-agent systems, I introduce a concept of mutual belief revision which is concerned with information exchange among agents. A concrete mutual revision operator is devised by generalizing the iterated revision operator. Likewise, a semantic model is used to show the intuition and many nice properties of the mutual revision operator, and the complexity of its computational model is formally analyzed. Finally, I present a belief update operator, which takes into account two important problems of reasoning about action, i.e., disjunctive updates and domain constraints. Again, the updated operator is presented with both a semantic model and a computational model.
|
Page generated in 0.0403 seconds