1 |
Untersuchungen zur Neuverteilung der Rücklaufflüssigkeit in PackungskolonnenBartlok, Guido 17 November 2002 (has links) (PDF)
Bei der Rektifikation werden heute zunehmend Füllkörperkolonnen mit geordneten Packungen eingesetzt. Die Maldistribution, ein bislang ungelöstes Problem in Füllkörperkolonnen, wirkt sich negativ auf die Stoffaustauschleistung aus. Zur Verringerung der Maldistribution wird zwischen den Packungssektionen mehrfach die Rücklaufflüssigkeit gesammelt und erneut gleichmäßig über den Kolonnenquerschnitt verteilt. Diese Neuverteilung realisieren Zwischenverteiler, die somit einen Großteil der Kolonnenhöhe beanspruchen und damit die Investitions- und Betriebskosten erheblich erhöhen. Hauptursache für die Bauhöhe der Zwischenverteiler ist der Wunsch nach einem vollständigen Konzentrationsausgleich vor der Neuverteilung. Um die Kolonnenhöhe zu verringern und dennoch die gleiche Trennleistung zu erreichen, mangelt es den Anlagenbauern bislang an einer praktikablen Lösung. Entgegen der bisherigen Lehrbuchmeinung wird in dieser Arbeit die Bedeutung des vollständigen Konzentrationsausgleich grundsätzlich in Frage gestellt. Es erfolgen deshalb theoretische und experimentelle Untersuchungen für ein besseres Verständnis der Neuverteilung der Rücklaufflüssigkeit und deren Auswirkung auf die Trennleistung. Durch Modifizierung des klassischen Zwei-Kolonnen-Modells gelingt es, den Einfluss der Maldistribution, der Dampfquervermischung und der hydraulisch gleichmäßigen Flüssigkeitsneuverteilung mit und ohne vollständigen Konzentrationsausgleich numerisch zu simulieren. Die Überprüfung der Simulationsmodelle erfolgt an einer Pilotkolonne mit einem inneren Durchmesser von 1 m. Die Kolonne ist mit Sulzer MellapakPlus 752.Y ausgerüstet und als Testgemisch dient trans-/cis-Dekalin. Im Ergebnis zeigt sich, dass vor allem der hydraulische Ausgleich erforderlich ist und es praktisch keinen Unterschied zwischen vollständigen und unvollständigen Konzentrationsausgleich bei sonst gleichen Betriebsbedingungen gibt. Überlegungen für deutlich flachere Verteilerkonstruktionen werden vorgestellt.
|
2 |
On-surface synthesis of acenes – / Oberflächensynthese von Acenen – organische nanoelektronische Materialien als Einzelmoleküle untersuchtKrüger, Justus 09 January 2018 (has links) (PDF)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level.
In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions.
The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein.
Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können.
Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
|
Page generated in 0.012 seconds