• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse der Identität und Abundanz Methanogener Archaeen in Biogasanlagen

Theiss, Juliane 12 January 2017 (has links) (PDF)
Trotz der zunehmenden Bedeutung, die der Biogasprozess in der Reihe der regenerativen Energiequellen seit einigen Jahren einnimmt, sind dessen mikrobiologische Prozesse häufig nur zum Teil verstanden und die Zusammensetzung der mikrobiellen Biozönose oft unbekannt. Um jedoch die Biogasgewinnung möglichst effektiv zu gestalten, ist es essentiell, die physikochemischen Bedingungen im Reaktor an die Mikroorganismen anzupassen. Daher war es ein Ziel dieser Arbeit, die mikrobielle Gemeinschaft in verschiedenen Biogasanlagen abhängig vom eingesetzten Substrat zu charakterisieren. Dabei zeigte sich, dass insbesondere die archaeelle Diversität in NawaRo-Anlagen sehr limitiert ist und die Organismen in den einzelnen Anlagen nah verwandt sind. Von großer Bedeutung waren dabei die Genera Methanoculleus und Methanosarcina (bei hoher Acetatkonzentration) bzw. Methanothrix (bei geringer Acetatkonzentration). Deren genaues Verhältnis in den verschiedenen Anlagen hing wesentlich von den zugesetzten Co-Substraten ab und vor allem in Anlage A konnte eine Abhängigkeit der Abundanz von Methanosarcina je nach Zusatz von Hühnertrockenkot bzw. Rindermist beobachtet werden. Im Gegensatz dazu spielten die untersuchten chemischen Parameter eine geringere Rolle und es konnten kaum Korrelationen zwischen der Abundanz einzelner archaeeller Genera und physikochemischen Parametern beobachtet werden. In der mit Klärschlamm betriebenen Anlage KA waren außerdem verschiedene Methanobacteriales und Organismen der WCHA1-57-Klade von Bedeutung. Neben methanogenen Archaea konnten in den Anlagen C, KA und KL außerdem Crenarchaeota nachgewiesen werden, die wahrscheinlich in das erst kürzlich neu postulierte Phylum der „Bathyarchaeota“ einzuordnen sind. Deren genaue physiologische Funktion im Biogasprozess ist jedoch noch ungeklärt. Zusätzlich zu den Archaea wurden exemplarisch auch Proben aus den einzelnen Anlagen hinsichtlich ihrer bakteriellen Population untersucht. Dabei waren in den NawaRo-Anlagen A, B, C und KL vor allem Firmicutes und Cloacimonetes zu finden. Letztere stellen dabei eine bisher nur wenig charakterisierte Gruppe dar, die wahrscheinlich im hydrolytischen Abbau von Cellulose und/oder Aminosäuren eine entscheidende Rolle spielen. Innerhalb der Firmicutes übten insbesondere die Clostridiales vielseitige physiologische Funktionen innerhalb der anaeroben Fermentation aus. Überraschend gering war jedoch der Anteil der syntrophen Organismen. Es ist möglich, dass einige der nicht näher klassifizierbaren OTUs dieser Gruppe angehören, da der syntrophe Abbau verschiedener Säuren von essentieller Bedeutung für den Biogasprozess ist. In der mit kommunalem Abwasserschlamm betriebenen Anlage KA war der Anteil der Firmicutes und Cloacimonetes deutlich geringer. Abundantestes Phylum waren hier die Proteobacteria, unter denen zusätzlich Syntrophe zu finden sind. Zusätzlich zur Untersuchung der mikrobiellen Gemeinschaft während des Normalbetriebes von Biogasanlagen wurden außerdem häufige Prozessstörungen simuliert. Dabei zeigte sich, dass es trotz rückläufiger Methanbildung häufig nicht zu Veränderungen in der Zusammensetzung der Mikroorganismen kommt und stattdessen deren Aktivität sinkt. Erst bei dramatischer Veränderung der physikochemischen Parameter, wie es im Rahmen des ersten Versuchs zur Ammonium-Intoxiaktion der Fall war, wurden deutliche Veränderungen in der archaeellen Biozönose detektiert. Die bakterielle Gemeinschaft blieb dabei kaum verändert. Bei geringerer Ammoniumkonzentration hingegen konnte eine gute Anpassungsfähigkeit der Archaea gezeigt werden. Dennoch war es nicht möglich, anhand dieser Versuche einen allgemein gültigen Grenzwert der Ammoniumkonzentration, ab der inhibitorische Effekte auftreten, festzulegen, da in Anlage A bei ähnlichen Konzentrationen die archaeelle Abundanz durchaus zurückging. Auch im Rahmen der Versuche zur Versauerung konnte eine gute Anpassungsfähigkeit der Archaea gegenüber erhöhten FOS-Konzentrationen gezeigt werden. Dabei war insbesondere eine erhöhte Abundanz der Syntrophomonadaceae mit Stressresistenz verbunden, während eine erhöhte Abundanz von Methanobacterium mit verminderter Säuretoleranz einher ging. Insgesamt liefern die Ergebnisse dieser Arbeit einen aufschlussreichen Einblick in die mikrobielle Population in NawaRo-Anlagen sowohl während des Normalbetriebes als auch im Verlauf von Prozessstörungen, die zu einem besseren Verständnis der ablaufenden Prozesse beitragen können. Dennoch ist die Rolle vieler beteiligter Organismen noch nicht gänzlich geklärt. Es sind daher weitere Studien nötig, um die mikrobiologischen Prozesse in Biogasanlagen vollständig zu verstehen.
2

Charakterisierung mikrobieller Gemeinschaften in ehemaligen, neutralen Uranerzbergwerken in Sachsen und Untersuchungen zur mikrobiellen Immobilisierung von Uran und Arsen

Gagell, Corinna 12 January 2016 (has links) (PDF)
Ehemalige Urangruben tragen durch das anfallende Flutungswasser maßgeblich zur Ausbreitung von Schadstoffen wie Uran und Arsen in teils dicht besiedelte Gebiete bei. Um die Prozesse in den unterirdischen Gruben besser zu verstehen und alternative Strategien zur konventionellen, kostenintensiven Wasserbehandlung entwickeln zu können, war das Ziel der Arbeit, mikrobielle Gemeinschaften aus drei gefluteten Uranerzbergwerken in Sachsen, namens Pöhla, Schlema und Zobes, die unterschiedliche Flutungsstadien repräsentierten, zu charakterisieren und den mikrobiellen Einfluss auf die Mobilität von Uran und Arsen zu untersuchen. Um herauszufinden, welche Mikroorganismen die hydrochemischen Vorgänge im Untergrund der Uranerzbergwerke beeinflussen könnten, wurde die Diversität und Zusammensetzung mikrobieller Gemeinschaften mittels Pyrosequenzierung eines Fragments des 16S rRNA Gens (16S rDNA) und CARD-FISH ermittelt. Wenngleich Clusteranalysen zeigten, dass sich die planktonischen Gemeinschaften hinsichtlich ihrer bakteriellen Zusammensetzung zwischen den drei Uranerzbergwerken unterschieden, wurden alle von chemolithotrophen Schwefeloxidierern der Beta- und Epsilonproteobacteria dominiert, die mit den Gattungen Thiobacillus und Sulfuritalea bzw. Sulfuricurvum und Sulfurimonas vertreten waren. Im Unterschied zu den planktonischen Gemeinschaften bestanden in situ Biofilme, die auf BACTRAPs während einer 3-monatigen Exposition im Flutungswasser anwuchsen, laut Pyrosequenzierung zu einem wesentlichen, mitunter dominanten Anteil aus metall- bzw. sulfatreduzierenden Deltaproteobacteria. In Biofilmgemeinschaften aus Zobes wurden hauptsächlich Geobacter sp. detektiert, die als Fe(III)- und U(VI)-Reduzierer bekannt sind. Obwohl Archaea basierend auf den Ergebnissen der CARD-FISH-Analyse nur einen sehr geringen Anteil der planktonischen Gemeinschaften ausmachten, wurden mittels Pyrosequenzierung planktonische Euryarchaeota der Thermoprotei in allen Gruben detektiert. In planktonischen Gemeinschaften und 3-monatigen Biofilmen aus Pöhla und Zobes wurden zudem methanogene Crenarchaeota, vor allem Methanobacteria und teilweise Methanomicrobia, ermittelt. Die 16S rRNA-Analyse, die ergänzend zum DNA-basierten Ansatz durchgeführt wurde, lieferte Hinweise darauf, dass die detektierten, dominanten Mikroorganismen, Bacteria sowie Archaea, in der planktonischen Gemeinschaft aus Schlema und den Biofilmgemeinschaften stoffwechselaktiv waren. In der planktonischen Gemeinschaft aus Zobes wurden im Vergleich zur DNA-basierten Analyse höhere Abundanzen für Verrucomicrobia, Acidobacteria und Alphaproteobacteria ermittelt, deren Bedeutung offen bleibt. Untersuchungen zum mikrobiellen Stoffwechselpotential planktonischer Gemeinschaften mittels CFU- und MPN-Analysen ergaben, dass Mikroorganismen aus allen Urangruben ein breites Spektrum anaerober Reaktionen (Nitrat-, Eisen-, Mangan-, Arsenat- und Sulfatreduktion und Acetogenese) unter Laborbedingungen abdeckten. In guter Übereinstimmung mit den Sequenzierungsergebnissen konnten methanogene Mikroorganismen nur im Flutungswasser aus Pöhla und Zobes detektiert werden. Die Metaproteomanalyse ergab, dass 61,6% der Peptide in der planktonischen Gemeinschaft aus Schlema von den dominanten Epsilonproteobacteria stammten. Dagegen wurden für Zobes detektierte Peptide mehrheitlich methylotrophen und eisenoxidierenden Betaproteobacteria der Familien Methylophilaceae bzw. Gallionellaceae sowie methylotrophen Gammaproteobacteria der Methylococcaceae zugewiesen. Obwohl die Mehrheit der Proteine an der Translation beteiligt war, konnten insgesamt 49 Proteingruppen ermittelt werden, deren Vertreter für den mikrobiellen Energiestoffwechsel relevant waren. Insbesondere planktonische Gammaproteobacteria aus Zobes konnten so mit dem Kohlenstoff- und Schwefelkreislauf in Zusammenhang gebracht werden. Mithilfe von Labormikrokosmen wurde der potentielle Einfluss mikrobieller Gemeinschaften aus Schlema auf die Mobilität von Arsen und Uran im Flutungswasser mit Acetat als Elektronendonor unter anaeroben Bedingungen über einen Zeitraum von 98 Tagen untersucht. Im Vergleich zu den Kontrollen konnten sowohl die stimulierte, planktonische Gemeinschaft als auch Biofilme natürliches Arsen aus der wässrigen Phase fast vollständig entfernen. Allerdings wies der spätere Anstieg des gelösten Arsens daraufhin, dass der immobilisierte Zustand langfristig nicht stabil blieb. In stimulierten Biofilm-Ansätzen wurde Uran mit bis zu 39 ± 9% (in Anwesenheit von 7 µM natürlichem Uran) bzw. 34 ± 8% (bei Zugabe von 50 µM U(VI)) aus der wässrigen Phase langfristig (98 Tage) immobilisiert. Laserfluoreszenzspektroskopische Untersuchungen zeigten, dass Uran im Biofilm reduziert wurde.

Page generated in 0.0168 seconds