1 |
Kinematic Calibration of Parallel Kinematic Machines on the Example of the Hexapod of Simple DesignSzatmari, Szabolcs 20 November 2007 (has links) (PDF)
The aim of using parallel kinematic motion systems as an alternative of conventional machine tools for precision machining has raised the demands made on the accuracy of identification of the geometric parameters that are necessary for the kinematic transformation of the motion variables. The accuracy of a parallel manipulator is not only dependent upon an accurate control of its actuators but also upon a good knowledge of its geometrical characteristics. As the platform's controller determines the length of the actuators according to the nominal model, the resulted pose of the platform is inaccurate. One way to enhance platform accuracy is by kinematic calibration, a process by which the actual kinematic parameters are identified and then implemented to modify the kinematic model used by the controller. The first and most general valuation criterion for the actual calibration approaches is the relative improvement of the motion accuracy, eclipsing the other aspects to pay for it. The calibration outlay has been underestimated or even neglected for a long time. The scientific value of the calibration procedure is not only in direct proportion to the achieved accuracy, but also to the calibration effort. These demands become particularly stringent in case of the calibration of hexapods of the so-called simple design. The objectives of the here proposed new calibration procedure are based on the deficits mentioned above under the special requirements due to the circumstances of the simple design-concept. The main goals of the procedure can be summarized in obtaining the basics for an automated kinematic calibration procedure which works efficiently, quickly, effectively and possibly low-cost, all-in-one economically applied to the parallel kinematic machines. The problem will be approached systematically and taking step by step the necessary conclu-sions and measurements through: Systematical analysis of the workspace to determine the optimal measuring procedure, measurements with automated data acquisition and evaluation, simulated measurements based on the kinematic model of the structure and identifying the kinematic parameters using efficient optimization algorithms. The presented calibration has been successfully implemented and tested on the hexapod of simple design `Felix' available at the IWM, TU Dresden. The obtained results encourage the application of the procedure to other hexapod structures.
|
Page generated in 0.0183 seconds