1 |
Impact of Random Deployment on Operation and Data Quality of Sensor NetworksDargie, Waltenegus 29 July 2010 (has links) (PDF)
Several applications have been proposed for wireless sensor networks, including habitat monitoring, structural health monitoring, pipeline monitoring, and precision agriculture. Among the desirable features of wireless sensor networks, one is the ease of deployment. Since the nodes are capable of self-organization, they can be placed easily in areas that are otherwise inaccessible to or impractical for other types of sensing systems. In fact, some have proposed the deployment of wireless sensor networks by dropping nodes from a plane, delivering them in an artillery shell, or launching them via a catapult from onboard a ship.
There are also reports of actual aerial deployments, for example the one carried out using an unmanned aerial vehicle (UAV) at a Marine Corps combat centre in California -- the nodes were able to establish a time-synchronized, multi-hop communication network for tracking vehicles that passed along a dirt road. While this has a practical relevance for some civil applications (such as rescue operations), a more realistic deployment involves the careful planning and placement of sensors. Even then, nodes may not be placed optimally to ensure that the network is fully connected and high-quality data pertaining to the phenomena being monitored can be extracted from the network. This work aims to address the problem of random deployment through two complementary approaches:
The first approach aims to address the problem of random deployment from a communication perspective. It begins by establishing a comprehensive mathematical model to quantify the energy cost of various concerns of a fully operational wireless sensor network. Based on the analytic model, an energy-efficient topology control protocol is developed. The protocol sets eligibility metric to establish and maintain a multi-hop communication path and to ensure that all nodes exhaust their energy in a uniform manner. The second approach focuses on addressing the problem of imperfect sensing from a signal processing perspective. It investigates the impact of deployment errors (calibration, placement, and orientation errors) on the quality of the sensed data and attempts to identify robust and error-agnostic features. If random placement is unavoidable and dense deployment cannot be supported, robust and error-agnostic features enable one to recognize interesting events from erroneous or imperfect data.
|
Page generated in 0.0211 seconds