• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of Column Separation Methods for Simplification of the Wet Chemistry Approach to Isolation of 211At

Watanabe, S., Gagnon, K., Hamlin, D. K., Chyan, M.-K., Balkin, E., Wilbur, D. S. 19 May 2015 (has links) (PDF)
Difficulties with reproducibility of isolation yields when distilling 211At from irradiated bismuth targets led us to use a “wet chemistry” approach for that process1. The wet chemistry approach has provided 211At isolation yields of ~ 78 % after decay and Bi attenuation corrections2. However, the use of diisopropyl ether (DIPE) in the separation process has made it difficult to reach our goal of automating the 211At isolation. Therefore, we have investigated the use of column materials to simplify the isolation of 211At and remove DIPE from the process. In this investigation we evaluated the use of a strong anion exchange resin (AG1×8), a strong cation exchange resin (AG MP-50) and a polyethylene glycol (PEG)-coated resin for separation of 211At from the bismuth target material. Anion and cation resins AG1×8 and AG MP-50 were obtained from commercial sources. A PEG-coated resin was prepared by reaction of the Merrifield resin with mPEG-OH 2000 in the pres-ence of tBuOK at 80 °C for 3 days, followed by drying under vacuum. Prior to use of the PEG resin, it was soaked in H2O. Resins (400–800 mg) were loaded into polypropylene columns (Applied Separations, Inc.). Column elution studies were conducted with and without reductants (0.75M FeSO4/1M H2SO4 or Na2S2O5) to determine their effect on capture of 211At. After target dissolution in HNO3 (and in most cases subse-quent removal of HNO3 by distillation and redis-solution of solid in 8M HCl), 211At solution was loaded onto the column, then the column was washed with 2M HCl or H2O to separate the Bi, and finally was eluted with strong base to remove the 211At. Initial studies were conducted with stable iodine to determine if reductants were effective in the presence of large amounts of bismuth ions. Studies with AG1×8 used 125I to determine if that radiohalogen could be captured and recovered from the column when eluting with boric acid buffers at pH 5.3, 8.0 or 10, or H2O at pH 7. Capture and recovery of 211At was evaluated under the same conditions. Further studies with AG1×8 involved eluting with 4M H2SO4. A limited study with AG MP-50 resin used 1M HCl as eluant. Studies with PEG-coated columns used 2M HCl, 4M HCl, 8M HCl, 16 M HNO3 and 8M HNO3 as initial (capture) eluants. Strong base (0.2, 1 or 12.5 M NaOH; 15M NH4OH) and 3 or 500 mM tetrabutylammonium bromide (TBAB) were evaluated for removal of 211At from the columns tested. The efficiency for capture of 211At on the AG1×8 column was high (99%) when loading with strong acid, but decreased when using 0.1–0.2M boric acid (69–91 %) buffer. Low 211At capture efficiencies were obtained with AG MP-50 col-umns (15–29%). High 211At capture efficiencies (96–100%) were obtained with PEG-coated resins when loading with 8M HCl or 8M HNO3, irre-spective of whether reductant was in the acid solution. Four column washings (2 mL of 2M HCl each) were required to remove all Bi prior to elution of 211At. No bismuth was detected in solution from the 4th washing in any of the elutions studied. Low (< 6%) recovery of 211At from the AG1×8 columns was obtained using the conditions studied. Good (60–79%) recovery of 211At was obtained from PEG-coated resin using 15M NH4OH. Isolation of the 211At from NH4OH solution was accomplished by distillation. In an initial study 211At distilled before obtaining a dry residue. However, later studies demonstrated that addi-tion of NaOH prior to distillation kept the 211At in the distilling flask. These studies demonstrated that PEG-coated columns could be used to isolate 211At from HNO3-dissolved bismuth targets with good non-optimized (~60%) overall recovery yields. The studies are continuing with optimization of elu-tion conditions and automation of the process.
2

Evaluation of Column Separation Methods for Simplification of the Wet Chemistry Approach to Isolation of 211At: Evaluation of Column Separation Methods for Simplification of the Wet Chemistry Approach to Isolation of 211At

Watanabe, S., Gagnon, K., Hamlin, D. K., Chyan, M.-K., Balkin, E., Wilbur, D. S. January 2015 (has links)
Difficulties with reproducibility of isolation yields when distilling 211At from irradiated bismuth targets led us to use a “wet chemistry” approach for that process1. The wet chemistry approach has provided 211At isolation yields of ~ 78 % after decay and Bi attenuation corrections2. However, the use of diisopropyl ether (DIPE) in the separation process has made it difficult to reach our goal of automating the 211At isolation. Therefore, we have investigated the use of column materials to simplify the isolation of 211At and remove DIPE from the process. In this investigation we evaluated the use of a strong anion exchange resin (AG1×8), a strong cation exchange resin (AG MP-50) and a polyethylene glycol (PEG)-coated resin for separation of 211At from the bismuth target material. Anion and cation resins AG1×8 and AG MP-50 were obtained from commercial sources. A PEG-coated resin was prepared by reaction of the Merrifield resin with mPEG-OH 2000 in the pres-ence of tBuOK at 80 °C for 3 days, followed by drying under vacuum. Prior to use of the PEG resin, it was soaked in H2O. Resins (400–800 mg) were loaded into polypropylene columns (Applied Separations, Inc.). Column elution studies were conducted with and without reductants (0.75M FeSO4/1M H2SO4 or Na2S2O5) to determine their effect on capture of 211At. After target dissolution in HNO3 (and in most cases subse-quent removal of HNO3 by distillation and redis-solution of solid in 8M HCl), 211At solution was loaded onto the column, then the column was washed with 2M HCl or H2O to separate the Bi, and finally was eluted with strong base to remove the 211At. Initial studies were conducted with stable iodine to determine if reductants were effective in the presence of large amounts of bismuth ions. Studies with AG1×8 used 125I to determine if that radiohalogen could be captured and recovered from the column when eluting with boric acid buffers at pH 5.3, 8.0 or 10, or H2O at pH 7. Capture and recovery of 211At was evaluated under the same conditions. Further studies with AG1×8 involved eluting with 4M H2SO4. A limited study with AG MP-50 resin used 1M HCl as eluant. Studies with PEG-coated columns used 2M HCl, 4M HCl, 8M HCl, 16 M HNO3 and 8M HNO3 as initial (capture) eluants. Strong base (0.2, 1 or 12.5 M NaOH; 15M NH4OH) and 3 or 500 mM tetrabutylammonium bromide (TBAB) were evaluated for removal of 211At from the columns tested. The efficiency for capture of 211At on the AG1×8 column was high (99%) when loading with strong acid, but decreased when using 0.1–0.2M boric acid (69–91 %) buffer. Low 211At capture efficiencies were obtained with AG MP-50 col-umns (15–29%). High 211At capture efficiencies (96–100%) were obtained with PEG-coated resins when loading with 8M HCl or 8M HNO3, irre-spective of whether reductant was in the acid solution. Four column washings (2 mL of 2M HCl each) were required to remove all Bi prior to elution of 211At. No bismuth was detected in solution from the 4th washing in any of the elutions studied. Low (< 6%) recovery of 211At from the AG1×8 columns was obtained using the conditions studied. Good (60–79%) recovery of 211At was obtained from PEG-coated resin using 15M NH4OH. Isolation of the 211At from NH4OH solution was accomplished by distillation. In an initial study 211At distilled before obtaining a dry residue. However, later studies demonstrated that addi-tion of NaOH prior to distillation kept the 211At in the distilling flask. These studies demonstrated that PEG-coated columns could be used to isolate 211At from HNO3-dissolved bismuth targets with good non-optimized (~60%) overall recovery yields. The studies are continuing with optimization of elu-tion conditions and automation of the process.

Page generated in 0.0667 seconds