• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L'Etrangeté du Plasma de Quarks et de Gluons

Roy, Christelle 28 October 2005 (has links) (PDF)
A l'instar des trois autres expériences auprès du collisionneur RHIC (Relativistic Heavy Ion Collider) du Brookhaven National Laboratory près de New York, STAR (Solenoidal Tracker At RHIC) est entièrement consacrée à la mise en évidence de cet état particulier de la matière nucléaire prédit par les calculs de QCD (Quantum ChromoDynamics) sur réseau : le plasma de quarks et de gluons (QGP pour Quark Gluon Plasma). Cet état, supposé être celui de l'Univers quelques fractions de secondes après le Big Bang, consisterait d'après sa définition originelle de 1975, en une matière dans laquelle quarks et gluons seraient déconfinés, sans interaction. Il pourrait être créé en laboratoire lors de collisions d'ions lourds réalisées à des énergies ultra-relativistes afin d'atteindre des températures et densités d'énergie extrêmes.<br />Après quasiment 20 ans de recherche auprès des différents accélérateurs de particules américains et européens, le CERN annonce le 10 février 2000 au cours d'une conférence de presse, la mise en évidence expérimentale d'un état particulier de la matière nucléaire, compatible avec la formation d'un QGP, sans pouvoir toutefois le caractériser pleinement. Les expériences du RHIC ont alors pris le relais. Aujourd'hui, au travers une pléthore de résultats nouveaux et parfois bien surprenants, il apparaît de façon de plus en plus certaine, qu'effectivement un état atypique de matière nucléaire a été créé à RHIC et notre vision du QGP comme un gaz parfait de partons n'interagissant que très faiblement, a depuis changé. Un nouvel acronyme a été défini : sQGP pour Strongly Interacting QGP. <br />Pour parvenir à cette observation, il a fallu passer par la caractérisation même de l'évolution des collisions d'ions lourds, du point de vue chimique et dynamique, en comparant les phénomènes des collisions d'ions lourds pour lesquelles les conditions devraient être réunies pour former un QGP à des collisions d'énergies moindres ou de systèmes plus légers qui ne peuvent permettre cette formation. Le QGP est en effet produit de manière beaucoup trop furtive pour pouvoir le sonder directement. Mon mémoire d'Habilitation à Diriger des Recherches présente les résultats des analyses que j'ai menées et qui ont contribué à la mise en évidence de la formation d'un état nouveau au RHIC et à cette nouvelle vision du plasma. Les stigmates du QGP ont été recherchés avec les particules contenant des quarks étranges : les résonances de particules simplement étranges et les baryons doublement étranges. <br />La production des résonances étranges Lambda(1520) apporte en effet des informations sur la phase d'hadronisation du plasma (lorsque les partons se recomposent en hadrons) : selon leur observation ou non, il pourrait être possible de caractériser le freeze-out chimique (instant où les interactions inélastiques cessent et la composition chimique du système est figée), le freeze-out cinétique (instant où les interactions élastiques cessent et les particules n'interagissent plus), si ces deux freeze-out coïncident ou si, au contraire ils sont séparés dans le temps et de combien. L'idée est la suivante : les Lambdas(1520) se désintègrent quasiment instantanément en un proton et un kaon. Par conséquent, si le temps entre les freeze-out chimique et cinétique est long, les produits de désintégration de ces particules peuvent être absorbés dans le milieu dense qui a été créé. En revanche, si les deux freeze-out coïncident ou sont très proches, les produits de désintégration ne sont pas affectés et la particule mère, c'est-à-dire la résonance, peut être identifiée. Ainsi, en mesurant les taux de production de ces particules dans les collisions proton–proton pour lesquelles les deux freeze-out coïncident, et en comparant les taux obtenus dans les collisions Au–Au, à l'énergie nominale du RHIC, il est apparu qu'effectivement, au moins 4 fm/c séparent les deux freeze-out dans les collisions Au–Au. Cette conclusion constitue une étape importante dans la compréhension des collisions d'ions lourds ultra-relativistes et du comportement de la matière dans des conditions extrêmes. Cette analyse est apparue comme originale au sein de la collaboration STAR, étant la première étude sur les résonances étranges. Des algorithmes spécifiques ont dû être mis au point et sont largement utilisés au sein de la collaboration qui depuis étudie de nombreuses autres résonances ou recherche des objets plus exotiques. <br />La production des baryons étranges a été largement investiguée les années passées car une augmentation « anormale » des taux de production est attendue si un QGP est formé. Les expériences du CERN ont observé effectivement une surproduction de l'étrangeté dans les collisions Pb–Pb mais n'ont pu conclure de manière décisive quant à une formation éventuelle d'un plasma car ces résultats pouvaient être également reproduits par des modèles de gaz de hadrons. Nous avons mené une analyse similaire avec les données de STAR en comparant les taux de production des Xi, baryons doublement étranges, dans les collisions proton–proton et Au–Au à sqrt(s_NN) = 200 GeV. Là aussi, les résultats sont demeurés ambigus. Ainsi, ces résultats ont conduit un certain nombre de physiciens à ne plus considérer les taux de production de particules étranges comme une signature robuste de la formation d'un QGP. En revanche, l'étrangeté est revenue sur le devant de la scène, de façon plus indirecte donnant des informations très diverses et sur les différentes étapes de la collision. <br />Les Xi ont révélé tout d'abord que le système créé à l'énergie nominale du RHIC serait en équilibre thermique et chimique et que les températures de freeze-out chimique sont proches de la température de déconfinement prédite par QCD. Nous avons également étudié les phénomènes dynamiques collectifs, appelés flot, qui naissent des interactions entre constituants et se traduisent par une émission de matière dans des directions privilégiées de l'espace de phase. En accord avec leurs faibles sections efficaces d'interaction, les Xi semblent émis bien plus tôt que les particules plus légères. Toutefois, le fait que ces baryons subissent un flot important, laisse supposer qu'elles auraient développé un flot, donc qu'elles auraient été soumises à des interactions, avant la phase d'hadronisation, autrement dit, dans une phase partonique. Les partons subiraient donc des interactions résiduelles, contrairement à ce que préconisaient les théoriciens du milieu des années soixante-dix.<br />Par ailleurs, en 2003, les quatre expériences du RHIC ont révélé conjointement la mise en évidence du phénomène de jet-quenching dans les collisions d'ions lourds : il traduit une diminution de la production de particules chargées de très haute impulsion transverse s'expliquant par la perte d'énergie des partons dans un milieu très dense. Nous avons réalisé cette analyse en considérant les X et montré que non seulement ces baryons subissent un jet-quenching mais aussi qu'ils ont un comportement différent de celui des mésons. Une dépendance des phénomènes dynamiques au type de particules a ainsi été mise en évidence en accord avec les modèles de coalescence préconisant que les hadrons se forment à partir de la recombinaison des quarks. Là aussi, émergence des partons comme degrés de liberté pertinents. <br />A partir de ces résultats entre autres, certains théoriciens affirment la découverte du QGP à RHIC mais les expérimentateurs sont plus prudents et désirent auparavant confirmer et enrichir leurs résultats par l'étude d'autres observables qui viendraient corroborer ces observations. Ces années ont été particulièrement stimulantes par l'évolution de nos connaissances grâce aux formidables résultats produits par les quatre expériences du RHIC. Les « vielles » signatures ont fait peau neuve se transformant en sondes nouvelles et riches en informations originales. La conception du QGP a évolué : il ne s'agit plus d'un gaz parfait constitué de partons évoluant librement mais d'un sQGP.

Page generated in 0.0389 seconds