• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 109
  • 109
  • 51
  • 30
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

An automatic micropolariscope : Its design, development and use for tubular joints stress analysis

Marston, R. E. January 1985 (has links)
No description available.
22

Pedestrian with vehicle interactions

Thompson, S. J. January 1986 (has links)
No description available.
23

Educating engineers for a holistic approach to fire safety

Woodrow, Michael January 2013 (has links)
Problems can be solved using existing knowledge and methods derived from past experiences; and in building design, where buildings are sufficiently similar to those already built, this process can be optimised by creating standardised solutions to common problems. There is significant demand for specialist engineers who can apply these standardised solutions to established problems quickly and accurately; but novel designs generate entirely new problems for which established solutions are not always applicable. Generalist engineers working on novel designs must first define the problems before they can develop options and if necessary, create optimised solutions. Fire safety engineering (FSE) is the process of achieving fire safety in our built environment. The field requires both specialists trained in current practice and generalists skilled in creative and critical thinking. Current fire safety engineering education is mostly aimed at producing specialists, yet there is growing demand for generalists in high-end architecture, hindered by a lack of generalist education. Current education literature in FSE explains in detail what to teach, however they do not explain how to motivate students to learn what is taught; how to create the ‘need to know’ - the purpose that drives learning. The purpose can either be intrinsically motivating (i.e. the subject is interesting) or extrinsically motivating (i.e. if you don’t learn it then you will fail the exam). The former is sustained by autonomy and choice; the latter is sustained by control. Control increases the likelihood that the predicted outcome will be realised, but by definition reduces the likelihood of realising any other outcome, including potential innovation.Initially a study was created to test the effects of creating an autonomous learning environment within a traditional lecture-based ‘fundamentals’ course at the University of Edinburgh. This study, along with observations at a range of US universities led to the formation of an overarching theory of education. Ultimately, purpose is the goal students strive to achieve; autonomy creates the opportunity to think and learn independently; and structure provides the constraints that converge students towards an optimised result, supported by sound evidence and reasoning. Thus the key to generalist education was to provide purpose, autonomy and structure (PAS) in that order. The PAS concept was trialled at EPFL (Switzerland) and the participating students, with no prior knowledge of fire engineering, produced work of exceptional quality. In summary, the present study offers an observational validation that Purpose, Autonomy & Structure (PAS) can be used to effectively support the generalist way of thinking and although the examples given in this paper are related to fire safety engineering (due to the need for generalists in that field), the qualitative evidence on which the conclusions are based is not subject-specific, implying that the PAS methodology could be applied to other disciplines.
24

The reconstruction of fires involving highly flammable hydrocarbon liquids

DeHaan, John David January 1995 (has links)
Highly flammable hydrocarbon liquids are involved in a high percentage of building fires, whether those fires are accidental or incendiary in origin. Their mere presence is often taken as proof of a particular fire cause by some investigators despite their limited knowledge of the behaviour of the vapours from these fuels as they spread and diffuse. They are sometimes assumed to vaporize completely and instantly upon exposure and to diffuse uniformly through any compartment. The available models address large scale spills in ambient conditions of sun and wind, which do not apply to typical building fires. This study addressed the problem of modelling the spread of vapours from small-scale (less than four litre) spills of highly flammable liquids by means of a series of overlapping and complementary experiments, all of which dealt with the conditions found in most interior building fires (moderate temperatures, still air, and no sun). It was determined that the surface area produced by a given quantity of liquid could be predicted for smooth, flat floors whose surfaces could be classified as non-porous (vinyl or painted wood), semi-porous (unfinished concrete or wood), or porous (carpet or sand). The type of surface also controlled the evaporation rate (per unit area of the pool). Evaporation rates from surfaces such as carpet saturated with pentane were 1.5 times the rate for a free-liquid pool at the same temperature. A granular substrate such as sand produced a pentane evaporation rate twice that of a pentane liquid pool. This effect is not related to the roughness of the surface itself, but rather to the capillary drive within the matrix. Such a drive is stronger for granular matrices with a small void space (high packing density) and lower for those with larger void space. The size of the pool also controls the evaporation rate (the mass loss rate per unit surface area). Smaller pools (0.05 - 0.1m diameter) exhibit much higher rates than do the larger ones (0.3m) in this study. This is due to the enhanced evaporation due to lateral flow of vapours from the edges of the pools. Larger pools have a large central quiescent area that does not contribute to the overall evaporation. Smaller pools have no such quiescent area and a higher initial rate. There are also predictable losses due to pouring and splashing of volatile fuels that are closely related to the vapour pressure of the liquid involved. Vertical diffusion of n-pentane and hexane vapours is very slow when the vapours are being generated by evaporation from a pool. The heat lost to evaporative cooling results in a pronounced thermal gradient in the atmosphere above a pool that suppresses the vertical diffusion. The diffusion rates of pentane, hexane, and octane vapours can be predicted and the height at which an ignitable vapour/air mixture is present can be calculated. The vapours also exhibit a pronounced advective flow which spreads the vapours in a viscous, laminar fashion. The spread rate of this advective flow can be calculated and agrees well with experimental data. The evaporation of n-pentane, hexane, and n-octane were found to be predictive of the evaporative behaviour of petrol and camping fuels, two of the consumer products more commonly encountered in fires. Petrol, with its high concentration of pentane-like hydrocarbons, evaporates at the same rate as does n-pentane, at least for the first 10 -15min. Camping fuels are dominated by hexanes and their evaporative behaviour is very similar to that of the hexane studied in detail here. Octane contributes very little combustible vapour at typical room temperatures due to its very low evaporation rates at these temperatures. The behaviour of the flame propagation in vapour/air mixture layers is predictable. Layer ignition is found to produce some characteristic features that may be observed by a witness to the fire or that may produce burn patterns that survive the fire to be found by a diligent investigator. Unfortunately, estimates of the quantity of flammable liquid present and its distribution prior to the fire cannot be reliably made by examination of the burn patterns on carpet or floors after the fire, particularly if the fire was not suppressed for some time after ignition. Finally, an operational model based on these findings is offered for the use of fire investigators. This model, while limited to incidents in closed compartments with no mechanical ventilation and limited activity, offers a means by which the physical distribution of ignitable vapours can be predicted as it varies with time. This enables the investigator to explore the viability of various hypotheses about the quantity and distribution of flammable liquids prior to a fire, the relative location (both vertical and horizontal) of a potential ignition source, and, most importantly, the time factors involved in the evaporation of a flammable liquid and distribution of its vapours.
25

Performance-based methodology for the fire safe design of insulation materials in energy efficient buildings

Hidalgo-Medina, Juan P. January 2015 (has links)
This thesis presents a methodology to determine failure criteria of building insulation materials in the event of a fire that is specific to each typology of insulation material used. This methodology is based on material characterisation and assessment of fire performance of the most common insulation materials used in construction. Current methodologies give a single failure criterion independent of the nature of the material – this can lead to uneven requirements when addressing materials of different characteristics. At present, fire safety codes establish that performance of different materials or assemblies is assumed to be “equivalent” when subject to the same test, where attainment of the unique failure criteria occurs after a required minimum time. Nevertheless, when using extremely different materials this may not be actually the case. Building performance is currently defined in a quantitative way with respect to factors such as energy usage (i.e. global thermal transmittance), element weight (i.e. thickness and mass), space utilisation and cost of application. In the case of fire performance, only a threshold value is required, therefore a quantitative performance assessment is not conducted. As a result, the drivers are those associated with the variables that can be quantified, whereas the thresholds merely need to be met without any alternative for a better performance. This work opens the door to a performance-based-design methodology that takes into account fire performance as an optimisation variable for the building design, to be used with all other quantifiable variables. An added advantage is that the numerical tool required embraces a low level of complexity. As a result, the possibility for any insulation product to achieve quantifiable and acceptable fire safety levels for required energy efficiency targets is established. As a final remark, an application of the performance assessment methodology that introduces fire safety as a quantifiable variable is presented.
26

A study of the effect of tunnel aspect ratio on control of smoke flow in tunnel fires

Bakar, M. Z. Abu January 1999 (has links)
No description available.
27

Fire engineering in sustainable buildings : an evaluation for the application of performance-based design in Abu Dhabi

Al Hashmi, Emad January 2016 (has links)
Sustainable Building Design and Engineering is an integrated approach to energy, health, and operational performance. Abu Dhabi, the capital of United Arab Emirates (UAE) is experiencing a phenomenal growth in built environment. In this context, the Abu Dhabi Government has taken initiatives and measures to sustainable building designs development. This research aimed to develop a guideline for the application of performance- based fire-engineering design with sustainable building designs. In addition, it builds a referral information base helping to build sustainable communities, where fire- related fatalities and risks mitigated. Identifying fire safety and sustainability relation, and assessing technical and regulatory challenges with performance-based designs (PBD) in buildings are also part of this study. It also investigated current practices in sustainable building design and fire safety measures applied by Abu Dhabi Civil Defence (ADCD) under the existing construction legislations. The overall results of the study addressed three main areas, namely, sustainability, fire safety, and legality of the construction industry in Abu Dhabi. The data obtained from the case studies, the questionnaire and face-to-face interviews revealed a strong element of misunderstanding regarding the accurate definition of sustainable building design in Abu Dhabi especially among the stakeholders, including the enforcers. This is by pushing towards sustainable design concepts and technologies without taking into consideration the effects on fire safety level from one side and misunderstanding of the local conditions that shape a local definition for building sustainability in Abu Dhabi hot humid climate. Second, the results relating to fire safety measures in Abu Dhabi showed that some factors in the sector of fire safety seemed to affect the accurate application of Performance- Based Design (PBD). These factors were considered as technical and administrative challenges facing the application of PBD and its safety level. Third, the existing local construction legislation and regulations do not support the application of sustainable building design in innovative designs that implementing fire engineering approach. This includes the lack of legislation, disintegration of requirements between building regulators and absence of law enforcement on building owners. The overall findings of this study showed that the application of fire engineering in the innovative sustainable design under the existing construction legislations and culture could have some serious issues to overcome before achieving accepted safety level. In conclusion, there is a common perception that application of sustainable building design can increase fire safety risk. Innovative fire engineering applications compromises on sustainability and vice-versa. A number of similar studies in Abu Dhabi have shown reduction in fire safety on applying performance- based designs. These are challenging issues with the Governments and they are concerned with the local authorities. The building industries in Abu Dhabi need guidelines to find a trade-off between fire safety and sustainability with application of performance based designs.
28

Predicting injury among nursing personnel using personal risk factors

Gjolberg, Ivar Henry, January 1900 (has links)
Thesis (M.S.)--Texas A & M University, 2003. / "Major Subject: Safety Engineering." Title from author supplied metadata (automated record created on Apr. 30, 2004.). Vita. Abstract. Includes bibliographical references.
29

Test re-test repeatability of the strain index

Stephens, John-Paul, January 2003 (has links)
Thesis (M.S.)--Texas A & M University, 2003. / "Major Subject: Safety Engineering." Title from author supplied metadata. Includes bibliographical references.
30

Safety aspects in the storage of bitumen

Swindells, I. January 1986 (has links)
in heated penetration and oxidised grade bitumen storage tanks in the USA, a number of suggestions were made concerning the possible presence of components of the fire triangle. If such conditions exist, then the need for inerting tanks held above certain storage temperatures can be demonstrated. Current practice relating to the handling and storage of bitumens in the UK has been examined, and measurements made at refineries, Quarries and other installations storing bitumen under elevated temperatures. This has been supplemented by the building of small scale replicas in the laboratory so that conditions in full scale tanks could be simulated. This enabled generation of flammability and gas concentration data for a variety of bitumens. A thorough investigation of bitumens and their associated coke-like deposits has been made. Flash and autoignition points have been determined, While a range of thermal analysis techniques have been employed to determine the pqssible existence of exothermic decomposition reactions. Inter alia gas Chromatography/mass spectrometry and infrared analysis techniques has enabled a detailed study to be made of the decomposition products evolved from bitumens and deposits on heating. Scanning electron microscopy and the use of a micro-combustion technique has provided information on the elemental composition. The physical properties of penetration value, -softening point, viscosity and thermal conductivity have also been determined for bitumens. It has been found that current UK practice may, in some cases, permit two sides of the fire triangle to exist in non-inerted tanks. The presence of a third component, an ignition source has not yet been substantiated. Flammable atmospheres can exist in storage tanks at the currently . recommended maximum storage temperatures. This is particularly the case with the oxidised grade bitumens which eXhibit high values of %LEL at these temperatures.

Page generated in 0.1622 seconds