• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 13
  • 10
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ESTIMATION OF EVAPOTRANSPIRATION AND IRRIGATION UNIFORMITY FROM SUBSOIL SALINITY (ARIZONA).

HASSAN, HESHAM MAHMOUD. January 1985 (has links)
Irrigation uniformity, efficiency, leaching fraction, salt and water ages, and evapotranspiration rate were estimated from subsoil salinity data for three cotton fields in Arizona. The estimation of these parameters was based on the assumption of steady-state water and salt flow through the crop root zone. The levels of salt concentration in the irrigation water were 21.3, 11.5, and 11.6 meq/L for Fields 1, 2, and 3, respectively. Two of these fields were furrow irrigated, and the third was subsurface drip irrigated. Each field was sampled for salt concentrations to a depth of 1.5 m at 10-15 sites. A total of 514 soil samples were collected. Significantly lower salt concentrations were observed in the soil profiles in Fields 1 and 2 compared to Field 3, but lower variations in the salt concentrations were observed in Field 3 compared with Fields 1 and 2. These variations in salt concentration could be due to restricted water movement within the soil profile caused by stratified soil. Since a soil-water extract model indicated little or no chemical precipitation of salt within the soil profile, there was no need to correct the data for chemical effects. The calculated irrigation uniformity was highest in Field 3 and lowest in Field 1. This may be related to more accurate land leveling in field 2 than Field 1. The irrigation efficiencies were 83.0%, 89.0%, and 80.0% for Fields 1, 2, and 3, respectively. The correlation coefficient between the ages of salt and water was 0.98, 0.99, and 0.97 for Fields 1, 2, and 3, respectively. Leaching fraction was highest in Field 3 and lowest in Field 2. Mean actual ET calculated from the Blaney-Criddle method were 372, 314, and 308 mm for Fields 1, 2, and 3, respectively. Mean ET calculated from the salinity data were 1,250, 1,590, and 1,140 mm for Fields 1, 2, and 3, respectively. Statistically significant correlation coefficients were, however, found between both methods of estimating ET. These values were 0.97, 0.86, and 0.93 for Fields 1, 2, and 3, respectively.
12

In the aftermath of migration assessing the social consequences of late 13th and 14th century population movements into southeastern Arizona /

Neuzil, Anna A. January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Arizona, 2005. / Includes bibliographical references (leaves 537-572).
13

Salinity Problems of the Safford Valley: An Interdisciplinary Analysis

Muller, Anthony B. 05 May 1973 (has links)
From the Proceedings of the 1973 Meetings of the Arizona Section - American Water Resources Assn. and the Hydrology Section - Arizona Academy of Science - May 4-5, 1973, Tucson, Arizona / A change in groundwater quality, averaging approximately +0.13 millimhos electrical conductivity and +35 ppm chloride per year, has been documented between 1940 and 1972 with data from ten long -term sample wells. The decrement in the water quality of the surficial aquifer seems to be attributable to four major mechanisms. An increase in salinity may be expected from leakage of saline water from the artesian aquifer. Such leakage would be stimulated by pumping- caused reduction of confining pressure, and by the puncture of the cap beds by deep wells. Water reaching the aquifer from natural recharge may contribute salts to the system. Such recharging water, if passed through soluble beds, could contribute to the salt. Lateral movement of water through similar deposits may be a contribution, and the concentration and infiltration of agricultural water could also add to aquifer salinity. The economic analysis of the Safford Valley, based on the modeling of a "Representative Farm" analog, indicates that cotton will remain economical to produce on the basis of the projected salinity trends, for a significant time beyond limits of prediction. The analysis indicates that the optimum salt-resistant crops for the area are being cultivated, and, of these, alfalfa will cease to be productive in large areas of the valley by 1990. The entire valley will not produce alfalfa for profit by 2040. The methodologies shown in the paper indicate how pumping influences salinity change and outline salinity control recommendations for the area.

Page generated in 0.0344 seconds