• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • 2
  • 2
  • 2
  • Tagged with
  • 37
  • 37
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Closer Look at Salt, Faults, and Gas in the Northwestern Gulf of Mexico with 2-D Multichannel Seismic Data

Nemazi, Leslie A. 2010 May 1900 (has links)
The sedimentary wedge of the northern Gulf of Mexico is extensively deformed and faulted by salt tectonics. Industry 2-D multichannel seismic data covering a large area (33,800 km2) of the lower Texas continental slope [96 degrees 40'- 93 degrees 40'W; 27 degrees 10N - 26 degrees N] were examined to evaluate the interplay of salt, faults and gas. Seismic interpretation revealed the study area has two different styles of faulting and two different types of salt bodies that vary east to west. The eastern region of the study area has a thin sedimentary section and a massive, nearly continuous salt sheet characterized by minibasins and local salt highs. Faulting in this area appears to be the result of salt tectonism. The western region of the study area has a thick sedimentary wedge, and a few isolated salt diapirs. Long, linear faults are parallel to slope and imply some degree of gravitation sliding. The difference in faulting styles and salt bodies can be attributed to different depositional environments, different styles and amounts of sediment loading and different amounts of salt initially deposited. While there is a widespread occurrence of gas throughout the study area, little evidence of continuous bottom simulating reflectors (BSRs), a widely accepted geophysical indicator of gas hydrate, has been found. The gas hydrate stability zone (GHSZ) was modeled to provide information on the thickness and variability of the stability zone, and provide a baseline in a search for BSRs. The dataset was analyzed for multiple seismic expressions of BSRs, however only a few small and isolated examples were found. Potential fluid escape structures were seen in the seismic data. Despite the great number of potential features found in the seismic data only seven active seeps were found in a seep study by I. R. MacDonald. Seeps were seen in far less abundance than the number of seeps found offshore Louisiana. This may imply a lack of source offshore Texas.
2

Salt tectonics and sequence-stratigraphic history of minibasins near the Sigsbee Escarpment, Gulf of Mexico

Montoya, Patricia. January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
3

The role of salt tectonics in the hydrocarbon potential of the post-salt deposits (albian to recent), offshore Gabon

Makhubele, Marvel M.H. January 2014 (has links)
Masters of Science / Following successful discovery and production of hydrocarbons, Gabon is one of the key hydrocarbon target countries in Africa. Located in the Lower Congo Basin, the study area is based in Etame Marin Permit (EMP), which is licensed to VAALCO Energy Inc., and has been producing hydrocarbons since 2002. The currently explored and producing reservoirs are in the pre-salt sandstones of the Aptian Gamba Formation, charged with hydrocarbons sourced from the syn-rift lacustrine shale of the pre-Aptian Melania Formation. With the aim of finding potential petroleum plays in the post-salt successions and by using 3D prestack depth migration (PSDM) seismic sections and wireline logs, a detailed study of the post- Aptian stratigraphy and salt tectonics of the EMP was undertaken. Eight distinct reflectors were identified based on gamma ray signatures, stratal terminations and isopach trends. Sediment distribution patterns and the relative sea level history of the succession were determined by applying principles of sequence stratigraphy and salt tectonics. Furthermore, two potential plays have been outlined in the post-salt carbonates of the Albian Madiela Formation as well as in sandstones of the Turonian Azile Formation. These reservoirs might have been charged with hydrocarbons from the pre-salt shale of the Melania Formation and/or potentially also enriched from the Albian and Cenomanian shales. For these post-salt hydrocarbon reservoirs to be charged by the pre-salt source rocks, windows within the extensive evaporitic sealing of the Aptian Ezanga Formation were required. 3D PSDM seismic sections attest that diapirism of the Aptian salt unit generated ample hydrocarbon migration pathways from the pre-salt source rocks to post-salt reservoirs. Five well-developed potential salt windows have been identified, two of which have good probability to have facilitated the upward migration of hydrocarbons, because these salt windows are located up dip of oil producing wells. However, even if hydrocarbons are found in the post-salt reservoirs, similarly to the Yombo Field (located offshore Congo, south of the EMP), these shallow reservoirs in the EMP are likely to produce heavy oils due to biodegradation.
4

The influence of syn-rift structural segmentation over the post-rift geological evolution of the equatorial Gulf of Guinea rifted continental margin

Kirkland, David Andrew January 1999 (has links)
No description available.
5

Salt Control on Sedimentary Processes in Early Pleistocene: Ship Shoal South Addition Blocks 349-358, Gulf of Mexico.

Syarif, Munji 30 September 2004 (has links)
The interpretation of 3D seismic data from Ship Shoal South Addition Blocks 349-358, Gulf of Mexico shows a complex interaction between salt, faults, and sedimentary strata. Reconstruction of the geometry of early Pliestocene (about 3.65 Ma) through recent salt and associated sediments reveals the evolution of a supralobal basin in the study area. The basin depocenter shifted from the northeastern part to the center of the study area through time. A small, bulb-shaped, salt-stock structure occurs in the northwest, and a salt sheet structure is present in the southeastern part of the study area. Those structures are part of a pennant-shaped structure bounded by counter regional faults trending northeastward. Salt movements created instability and triggered extensive faulting of the overlying strata. Three-dimensional reconstruction suggests that salt blocked the sediment during the early Pleistocene. The sediment was diverted around the salt high on both east and west sides of the salt body to the southwest and southeast. Stratigraphic interpretation of the interval between 1.35 Ma and 1.95 Ma led to the identification of a highstand systems tract (HST), a transgressive systems tract(TST), and two lowstand systems tracts (LST). The strata are developed normally in the depocenter area, whereas the strata at the basin margin were deformed by salt movement and faulting. Each systems tract is uniquely associated with a certain seismic facies. Three seismic facies were identified associated with LST, TST, and HST. Additionally, seismic sections reveal channel geometries in the LST. Seismic attribute analysis elucidates facies distribution in the systems tracts. Because of its ability to move, to divert sediment, to create instability, and to block sediment transport pathways, salt exercises the main control on the sedimentary processes in the study area.
6

Response of minibasin subsidence to variable deposition : experiments and theory

Kopriva, Bryant Timothy 20 July 2012 (has links)
Differential loading induced deformation of a mobile substrate (e.g., salt tectonics) is an important process for the development of accommodation space and stratigraphic architectures in intra-slope minibasins. Numerous studies of minibasin systems have focused on either the tectonic processes involved in salt body deformation or the stratigraphic interpretation of the overburden sediment deposits. This study, however, focuses on coevolution of depositional and tectonic processes and provides a new insight of the linked evolution into the stratigraphic patterns. Using a silicone polymer to simulate a viscous mobile substrate, a series of 2D experiments were conducted to explore the effects of variation in 1) sedimentation rate, 2) depositional style (intermittent sediment supply), and 3) the thickness of the deformable salt substrate on subsidence patterns and minibasin evolution. Experiments results have shown that larger initial thickness of salt substrate as well as lower sedimentation rate caused greater amounts of subsidence for a given amount of deposit. Furthermore, increase in subsidence rate was observed as sedimentation continued, while decrease in subsidence rate occurred once sedimentation ceased. Due to the linked depositional and tectonic processes, higher sediment supply resulted in relatively slower subsidence and more actively widening minibasins. Lower sediment supply was observed to have the reverse effect, resulting in higher relative subsidence and a narrow basin width. A numerical model that captures viscous flow under the deposit is also presented here. The model for minibasin formation showed the effects of interaction of the two processes (deposition and tectonics) on the development of minibasin strata in the experiments. Experimental and modeled findings have resulted in a new model of minibasin development that incorporates the effects of sedimentation rates on subsidence patterns into basin evolution. / text
7

Albian/Maastrichtian tectono-stratigraphic evolution of Central Santos Basin, Offshore Brazil

Pequeno, Mônica Alves 04 February 2013 (has links)
The dissertation examines the interaction between basement tectonics, salt tectonics and sedimentation during the Late Cretaceous basement reactivation in the center of the Santos Basin. The study area is a seismic volume 60 x 30 km² in area, augmented by 2D regional seismic lines. The results of seismic interpretation and structural restorations revealed important inversions in the Late Cretaceous, including inversion of an NNE-oriented aborted rift segment known as Merluza Graben. The following tectono-stratigraphic evolution was inferred. During the Albian, basin subsidence and differential loading by the overburden caused salt to flow basinwards. In the Late Turonian, intraplate compression resulted in uplift of the onshore and proximal areas of the Santos Basin and in a newly recognized basement inversion in deep water. ENE and NNE oriented structures were reactivated. The uplift exposed the Turonian shelf and a new shelf began to prograde. The first shelves were narrow (~25 km wide) but enlarged to 60 km in the Santonian. Salt influenced the position of the shelf break and the progradation pattern of the shelf margin. Because of the continuous accommodation space provided by salt withdrawal underneath the sedimentary wedge, the shelf margin aggraded until underlying salt welded, after which the shelf prograded to a position around 50 km to the east of the present-day shelf break. Deformation peaked in the Late Santonian when the shelf was widest, the rate of progradation of the shelf margin was anomalously high, and transtension along the borders of the Merluza Graben allowed Late Santonian magma to intrude. Salt acted as a partial seal, causing a large part of the magma to spread beneath it. Some magma formed sills inside the evaporitic layer, intruding zones of dilation in the salt. Magma also followed the top of the evaporitic layer and intruded salt-related faults as dikes. These dikes supplied sills in the overburden and extrusive flows emerged on the Late Santonian seafloor from ENE-striking transtensional zones. Right-lateral reactivation of the Merluza Graben borders slightly compressed the graben, which favored sill injection in Coniacian/Santonian strata. Tectonic activity diminished towards the end of the Cretaceous. / text
8

Salt tectonics and sequence-stratigraphic history of minibasins near the Sigsbee Escarpment, Gulf of Mexico

Montoya, Patricia 28 August 2008 (has links)
Not available / text
9

3D seismic interpretation of turbidite-sands from the Gulf of Mexico

Akbar, Omar Othman, January 2005 (has links)
Thesis (M.S.)--University of New Orleans, 2005. / Title from electronic submission form. "A thesis ... in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geology and Geophysics"--Thesis t.p. Vita. Includes bibliographical references.
10

Investigation of the Qadimah Fault in Western Saudi Arabia using Satellite Radar Interferometry and Geomorphology Analysis Techniques

Smith, Robert B. 07 1900 (has links)
The Qadimah Fault has been mapped as a normal fault running through the middle of a planned $$$50 billion city. For this reason, there is an urgent need to evaluate the seismic hazard that the fault poses to the new development. Although several geophysical studies have supported the existence of a fault, the driving mechanism remains unclear. While a fault controlled by gravity gliding of the overburden on a mobile salt layer is unlikely to be of concern to the city, one caused by the continued extension of a normal rotational fault due to Red Sea rifting could result in a major earthquake. A number of geomorphology and geodetic techniques were used to better understand the fault. An analysis of topographic data revealed a sharp discontinuity in slope aspect and hanging wall tilting which strongly supports the existence of a normal fault. A GPS survey of an emergent reef platform which revealed a tilted coral surface also indicates that deformation has occurred in the region. An interferometric synthetic aperture radar investigation has also been performed to establish whether active deformation is occurring on the fault. Ground movements that could be consistent with inter-seismic strain accumulation have been observed, although the analysis is restricted by the limited data available. However, a simple fault model suggests that the deformation is unlikely due to continued crustal stretching. This, in addition to the lack of footwall uplift in the topography data, suggests that the fault is more likely controlled by a shallow salt layer. However, more work will need to be done in the future to confirm these findings.

Page generated in 0.0827 seconds