1 |
Pyrimidine Salvage Enzymes in Microorganisms: Labyrinths of Enzymatic DiversityBeck, Debrah A. (Debrah Ann) 12 1900 (has links)
Pyrimidine salvage pathways are essential to all cells. They provide a balance of RNA synthesis with the biosynthetic pathway in pyrimidine prototrophs and supply all the pyrimidine requirements in auxotrophs. While the pyrimidine biosynthetic pathway is found in almost all organisms and is nearly identical throughout nature, the salvage pathway often differs from species to species, with aspects of salvage seen in every organism. Thus significant taxonomic value may be ascribed to the salvage pathway. The pyrimidine salvage pathways were studied in 55 microorganisms. Nine different salvage motifs, grouped I-IX, were identified in this study based on the presence of different combinations of the following enzymes: cytidine deaminase (Cdd), cytosine deaminase (Cod), uridine phosphorylase (Udp), uracil phosphoribosyltransferase (Upp), uridine hydrolase (Udh), nucleoside hydrolase (Nuh), uridine/cytidine kinase (Udk), 5'-nucleotidase and CMP kinase (Cmk).
|
2 |
Pyrimidine Nucleoside Metabolism in Pseudomonads and Enteric BacteriaScott, Allelia Worrall 12 1900 (has links)
Metabolic differences in the strategies used for pyrimidine base and nucleoside salvage were studied in the pseudomonads and enteric bacteria. Fluoro--analogs were used to select mutant strains of E. coli, S. typhimurium, P. putida, and P. aeruginosa blocked in one or more of the uracil and uridine salvage enzymes. HPLC analysis of cell-free extracts from wild-type and mutant strains examined the effectiveness of the selections. Evidence was found for cytidine kinase in Pseudomonas and for an activity that converted uracil compounds to cytosine compounds. Using media supplemented with 150 μg of orotic acid per ml, P. putida SOC 1, a Pyr, upp mutant which utilizes orotic acid as a pyrimidine source was isolated for the first time in any study.
|
Page generated in 0.0473 seconds