• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zločin a trest po sicilsku v prózách současných italských spisovatelů-novinářů / Crime and Punishment Sicilian Style in Prose of a Contemporary Italian Writers-Journalists

Šupíková, Barbora January 2018 (has links)
The aim of this thesis is to show the current Italian authors work specifics who are asserted as journalists as well as writers and their journalistic and prosaic outputs is devoted to organized crime in today's Sicilian society. Roberto Alajmo, Gaetano Savatteri and Salvo Sottile and their literaty outputs È stato il figlio, Tempo Niente. La breve vita felice di Luca Crescente, Gli uomini che non si voltano, I ragazzi di Regalpetra, Maqeda and Più scuro di mezzanotte were chosen for an analysis. The criterion in choosing works was particularly a time span of its formation - for the first time they were published after 2005 and at the same time they are mostly the newest literary outputs of selected authors meeting the requirements. Particular authors are presented after an opening which is describing logical interrelationship between writers and journalists in history of Italian literature ever since the unification of Italy in 1870 and deals with history of Sicilian Mafia and Sicilian literature concerning a phenomenon of Mafia. Part of the following analytic section is devoted to work of particular writers-journalists. Emphasis is put on analysis of prosaic texts considering authors journalistic outputs. Watched is particularly a thematic line of their work and a possible reflection of events...
2

At the Heart of the Critical Vulnerability : Exploring Organizational and Technological Flexibility in Coastal Defense Anti-Ship Missile Warfare

Linell, Jan-Erik January 2022 (has links)
In coastal defense operations, anti-ship missile (ASM) attacks on amphibious assault high value targets (HVT) constitutes a window of opportunity with decisive potential. However, in war, the availability and performance of ASM-forces is uncertain and most likely less than ideal. This thesis explores how organizational and technological flexibility can be a solution to such uncertainties. This is achieved by modeling representative examples of weapon redundancy, weapon versatility, and a flexible balance between offensive and defensive powers. A Two-Layer Defense HVT Acquisition Missile Salvo Model is developed, as an extension of Hughes Missile Salvo Model, to enable detailed study of sub-saturation attacks that rely on missiles leaking through target defenses. The result of this study shows that organizational and technological flexibility can potentially enhance ASM-attacks directed at the HVTs of an amphibious assault in multiple ways. Mentionable key-findings are that additional ways of challenging target defenses, additional firepower, and increased lethality through characteristics such as precision will create tolerance to loss and tactical benefits.
3

Sliding Mode Control Based Guidance Strategies with Terminal Constraints

Kumar, Shashi Ranjan January 2015 (has links) (PDF)
In the guidance literature, minimizing miss distance along with optimizing the energy usage had been an objective for several decades. In current day applications, additional terminal performance such as impact angle and impact time are of paramount importance. These terminal constraints increase warhead effectiveness and survivability of the interceptor. This thesis contributes to the design of guidance laws addressing terminal constraints such as impact angle, impact time, and both impact time as well as impact angle, in addition to interception of targets. In the first part of the thesis, the guidance laws which ensure the alignment of the interceptor at a desired impact angle within a finite time is proposed using different variants of sliding mode control(SMC).The impact angle is first redefined in terms of line-of-sight angle and then the impact angle problem is converted to a simpler problem of controlling line-of-sight angle and their rates. The sliding mode capturability and interpretation of the guidance laws are presented. In order to cater to very large heading angle errors, which give rise to negative closing speed initially, modifications to the guidance laws are also suggested. The modifications to the guidance laws for avoiding singularities, which may be encountered during implementation, due to the inherent nature of terminal SMC, are suggested. However, the guidance laws, which alleviates the possibility of such singularities completely, are also designed by using non singular terminal SMC. The two loop guidance and control, for a skid-to-turn cruciform interceptor in the pitch plane, is also proposed with an autopilot designed using the concept of dynamic SMC. The guidance laws addressing impact angle constraint for three dimensional scenarios are also presented. Unlike the usual approach of decoupling the three dimensional engagement in to two mutually orthogonal planar engagements, the guidance laws are derived using coupled engagement dynamics. These guidance laws are designed using conventional and non singular terminal SMC and provide asymptotic and finite time alignment of the intercept or to the desired impact angles, respectively. Next, the SMC based guidance laws which ensure the interception of targets at pre-specified impact times is proposed in this thesis. The guidance law is first designed for stationary targets and then extended to constant velocity targets using the notion of predicted interception point. A switching surface is designed using the concepts of collision course and time-to-go with non-linear engagement dynamics and its role in achieving the objectives is also discussed. In order to account for large heading angle errors and even for negative initial closing speeds, different methods of estimation of time-to-go, resulting in two different guidance laws, are used. Unlike the existing guidance laws, the proposed guidance laws achieve an impact time even less than its initially estimated value. The flexibility in selecting a desired impact time is also exploited using the maximum available acceleration information. A cooperative salvo attack strategy, based on the proposed impact time guidance law, with a desired impact time chosen in real time using a centralized coordination algorithm, is proposed for stationary targets. The coordination manager determines a common impact time based on time-to-goof the interceptors, by minimizing the total switching surface deviations which in turn reduces the control effort. The thesis also proposes a SMC based guidance strategy which addresses impact angle and impact time constraints simultaneously. This guidance scheme is based on switching between impact time and impact angle guidance laws based on certain conditions. Unlike existing impact time guidance laws, the proposed guidance strategy takes into account the curvature of the trajectory due to the impact angle requirement. The interceptor first corrects its course to nullify the impact time error and then aims to achieve interception with desired impact angle. In order to reduce the transitions between the two guidance laws, a novel hysteresis loop is introduced in the switching conditions. Initially stationary targets are considered, and later the same guidance scheme is extended to constant velocity targets using the notion of predicted interception point. Theclaimsofalltheguidancelawsarevalidatedwithextensivesimulationsandtheir performances are compared with existing guidance laws. Although all the guidance laws derived in the thesis are based on the assumption of constant speed interceptors, their performances are evaluated with a time-varying speed interceptor model, subjected to aerodynamic conditions, to validate their efficacy. The implementation of impact time guidance on time-varying speed interceptors is a formidable challenge in the guidance literature. Such implementations have also been presented in the thesis after introducing the notion of average speed and shown to yield satisfactory performance.
4

Analysis of Proportional Navigation Class of Guidance Law against Agile Targets

Ghosh, Satadal January 2014 (has links) (PDF)
Guidance is defined as the determination of a strategy for following a nominal path in the presence of o-nominal conditions, disturbances and uncertainties, and the strategy employed is called a guidance law. Variants of Proportional Navigation (PN), such as True Proportional Navigation (TPN) and Pure Proportional Navigation (PPN), have been studied extensively in the literature on tactical missile guidance. In the absence of target maneuvers, in a linear interceptor guidance problem, TPN was shown to be optimal. However, the standard PN class of guidance laws per se does not show good performance against maneuvering targets, and was found to be eective in intercepting a maneuvering target only from a restrictive set of initial geometries. Also, since these guidance laws were eectively designed for lower speed targets, they show a degraded performance when applied against higher speed targets. However, in the current defense scenario, two classes of agile targets, which are capable of continuous maneuver, and/or of much higher speed than the interceptor, are a reality. This thesis presents analysis of several variants of PN class of guidance laws against these two classes of agile targets. In the literature, an augmentation of the TPN guidance law, termed as Augmented Proportional Navigation (APN), was shown to be optimal in linearized engagement framework. The present work proposes an augmentation of the PPN guidance law, which is more realistic than TPN for an aerodynamically controlled interceptor, and an-alyzes its capturability in fully nonlinear framework, and develops sauciest conditions on speed ratio, navigation gain and augmentation parameter to ensure that all possible initial engagement geometries are included in the capture zone when applied against a target executing piecewise continuous maneuver. The thesis also obtains the capture zone in the relative velocity space for augmented PPN guidance law. In the literature, a novel guidance law was proposed for the interception of higher speed targets in planar engagement by using a negative navigation gain instead of the standard positive one, and was termed as Retro-PN. It was shown that even though the Retro-PN guided interceptor takes more time than PN guided one in achieving successful interception, Retro-PN performs significantly better than the classical PN law, in terms of capturability, lateral acceleration demand, and closing velocity, when used against higher speed targets. The thesis analyzes Retro-PN guidance law in 3-D engagement geometries to yield the complete capture zone of interceptors guided by Retro-PN guidance philosophy, and derives necessary and sucient conditions for the capture of higher speed non-maneuvering targets with and without a constraint on finiteness of lateral acceleration. Terminal impact angle control is crucial for enhancement of warhead eectiveness. In the literature, this problem has been addressed mostly in the context of targets with lower speeds than the interceptor. The thesis analyzes the performance of a composite PN guidance law, that uses standard PPN and the Retro-PN guidance laws based on initial engagement geometry and requirement of impact angle, against higher speed non-maneuvering targets. Then, to expand the set of achievable impact angles, it proposes a modified composite PN guidance scheme, and analyzes the same. For implementation of many modern guidance laws, a good estimate of time-to-go is essential. This requirement is especially severe in case of impact time constrained en-gagement scenarios. To this end, an ecient and fast time-to-go estimation algorithm for generic 3-D engagement is required. Two time-to-go estimation algorithms are presented and analyzed in this work for the engagement of a PPN or Retro-PN guided interceptor and a higher speed target. The first one is a closed form approximation of time-to-go in terms of range, nominal closing speed and an indicator of heading error, and the second one is a numerical recursive time-to-go estimation algorithm. To improve the odds of intercepting an intelligent target and destroying it, a salvo attack of two or more interceptors could be considered as a viable option. Moreover, this simultaneous salvo attack can also be further improved in eciency by incorporating the shoot-look-shoot approach in making a decision about launching interceptors. This can be considered as the first step towards a layered defense system, which has been described in the literature as a potentially eective strategy against short range or long range ballistic threat. To this end, the present work proposes two PPN and Retro-PN based guidance strategies for achieving simultaneous salvo attack on a higher speed non-maneuvering target. For the implementation of the same the numerical recursive time-to-go estimation technique proposed in this work is utilized
5

Guidance Laws for Engagement Time Control

Abdul Saleem, P K January 2016 (has links) (PDF)
Autonomous aerial vehicles like missiles and unmanned aerial vehicles (UAVs) have attracted various military and civilian applications. The primary guidance objective of any autonomous vehicle is to reach the desired destination point (target or waypoint). However, many practical engagements impose additional constraints like minimum control effort, a desired final velocity direction or a predefined engagement time. This thesis addresses engagement time constrained guidance problems pertaining to missiles and UAVs. The first part of the thesis discusses a nonlinear guidance law for impact time control of missiles against stationary target. The guidance law is designed with a particular choice of missile heading error variation as a function of ran to-target. The proposed heading error variation leads to an exact closed-form expression for the impact time. controlling the impact time, a closed-form relation is derived relating the control parameter to the desired impact time. A new Lyapunov based guidance law with a monotonically decreasing lateral acceleration is proposed in the next part of the thesis. An exact expression for impact time with minimum and maximum achievable impact times is derived. A control parameter is proposed with a closed-form relationship to the desired impact time. Using the concept of predicted interception point, the two guidance laws are extended for impact time control against non-maneuvering and moving targets. The proposed guidance models are extended to three-dimensional engagements by deducing yaw and pitch lateral accelerations satisfying the desired heading error profile. Extensive simulation studies are carried out for single missile and salvo attack scenarios. The last part of the thesis presents a guidance methodology governing the arrival time of a UAV at a waypoint. A specific arrival angle is considered as an additional constraint. The arrival constraints are satisfied by varying the navigation gain of the proportional navigation guidance law. The methodology is applied for simultaneous and sequential arrival of UAVs at a waypoint.

Page generated in 0.1995 seconds