• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of the Entropy Concept to Thermodynamics and Life Sciences: Evolution Parallels Thermodynamics, Cellulose Hydrolysis Thermodynamics, and Ordered and Disordered Vacancies Thermodynamics

Popovic, Marko 01 June 2018 (has links)
Entropy, first introduced in thermodynamics, is used in a wide range of fields. Chapter 1 discusses some important theoretical and practical aspects of entropy: what is entropy, is it subjective or objective, and how to properly apply it to living organisms. Chapter 2 presents applications of entropy to evolution. Chapter 3 shows how cellulosic biofuel production can be improved. Chapter 4 shows how lattice vacancies influence the thermodynamic properties of materials. To determine the nature of thermodynamic entropy, Chapters 1 and 2 describe the roots, the conceptual history of entropy, as well as its path of development and application. From the viewpoint of physics, thermal entropy is a measure of useless energy stored in a system resulting from thermal motion of particles. Thermal entropy is a non-negative objective property. The negentropy concept, while mathematically correct, is physically misleading. This dissertation hypothesizes that concepts from thermodynamics and statistical mechanics can be used to define statistical measurements, similar to thermodynamic entropy, to summarize the convergence of processes driven by random inputs subject to deterministic constraints. A primary example discussed here is evolution in biological systems. As discussed in this dissertation, the first and second laws of thermodynamics do not translate directly into parallel laws for the biome. But, the fundamental principles on which thermodynamic entropy is based are also true for information. Based on these principles, it is shown that adaptation and evolution are stochastically deterministic. Chapter 3 discusses the hydrolysis of cellulose to glucose, which is a key reaction in renewable energy from biomass and in mineralization of soil organic matter to CO2. Conditional thermodynamic parameters, ΔhydG', ΔhydH', and ΔhydS', and equilibrium glucose concentrations are reported for the reaction C6H10O5(cellulose) + H2O(l) ⇄ C6H12O6(aq) as functions of temperature from 0 to 100°C. Activity coefficients of aqueous glucose solution were determined as a function of temperature. The results suggest that producing cellulosic biofuels at higher temperatures will result in higher conversion. Chapter 4 presents the data and a theory relating the linear term in the low temperature heat capacity to lattice vacancy concentration. The theory gives a quantitative result for disordered vacancies, but overestimates the contribution from ordered vacancies because ordering leads to a decreased influence of vacancies on heat capacity.

Page generated in 0.089 seconds