Spelling suggestions: "subject:"goodglass""
1 |
Improving Object Detection using Enhanced EfficientNet ArchitectureMichael Youssef Kamel Ibrahim (16302596) 30 August 2023 (has links)
<p>EfficientNet is designed to achieve top accuracy while utilizing fewer parameters, in addition to less computational resources compared to previous models. </p>
<p><br></p>
<p>In this paper, we are presenting compound scaling method that re-weight the network's width (w), depth (d), and resolution (r), which leads to better performance than traditional methods that scale only one or two of these dimensions by adjusting the hyperparameters of the model. Additionally, we are presenting an enhanced EfficientNet Backbone architecture. </p>
<p><br></p>
<p>We show that EfficientNet achieves top accuracy on the ImageNet dataset, while being up to 8.4x smaller and up to 6.1x faster than previous top performing models. The effectiveness demonstrated in EfficientNet on transfer learning and object detection tasks, where it achieves higher accuracy with fewer parameters and less computation. Henceforward, the proposed enhanced architecture will be discussed in detail and compared to the original architecture.</p>
<p><br></p>
<p>Our approach provides a scalable and efficient solution for both academic research and practical applications, where resource constraints are often a limiting factor.</p>
<p><br></p>
|
2 |
Efficientnext: Efficientnet For Embedded SystemsDeokar, Abhishek 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Convolutional Neural Networks have come a long way since AlexNet. Each year the limits of the state of the art are being pushed to new levels. EfficientNet pushed the performance metrics to a new high and EfficientNetV2 even more so. Even so, architectures for mobile applications can benefit from improved accuracy and reduced model footprint. The classic Inverted Residual block has been the foundation upon which most mobile networks seek to improve. EfficientNet architecture is built using the same Inverted Residual block. In this thesis we experiment with Harmonious Bottlenecks in place of the Inverted Residuals to observe a reduction in the number of parameters and improvement in accuracy. The designed network is then deployed on the NXP i.MX 8M Mini board for Image classification. / 2023-10-11
|
3 |
EFFICIENTNEXT: EFFICIENTNET FOR EMBEDDED SYSTEMSAbhishek Rajendra Deokar (12456477) 12 July 2022 (has links)
<p>Convolutional Neural Networks have come a long way since AlexNet. Each year the limits of the state of the art are being pushed to new levels. EfficientNet pushed the performance metrics to a new high and EfficientNetV2 even more so. Even so, architectures for mobile applications can benefit from improved accuracy and reduced model footprint. The classic Inverted Residual block has been the foundation upon which most mobile networks seek to improve. EfficientNet architecture is built using the same Inverted Residual block. In this paper we experiment with Harmonious Bottlenecks in place of the Inverted Residuals to observe a reduction in the number of parameters and improvement in accuracy. The designed network is then deployed on the NXP i.MX 8M Mini board for Image classification.</p>
|
Page generated in 0.0555 seconds