• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 9
  • 5
  • 3
  • 1
  • Tagged with
  • 37
  • 37
  • 19
  • 16
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Patterns and ecological consequences of water uptake, redistribution, and loss in tallgrass prairie

O'Keefe, Kimberly January 1900 (has links)
Doctor of Philosophy / Division of Biology / Jesse B. Nippert / Water availability is a key driver of many plant and ecosystem processes in tallgrass prairies, yet we have a limited understanding of how grassland plants utilize water through space and time. Considering that tallgrass prairies experience tremendous heterogeneity in soil resources, identifying spatiotemporal variation in plant ecohydrology is critical for understanding current drivers of plant responses to water and for predicting ecosystem responses to future changes in climate. Here, I investigated the patterns, drivers, and ecological consequences of plant water use (e.g., water uptake, water redistribution, and water loss) in a native tallgrass prairie located in northeastern Kansas, USA. Using a combination of leaf gas exchange, sap flow, and isotopic techniques, I addressed four main questions: 1) How does fire and grazing by bison impact use of water from different sources and niche overlap for common grasses, forbs, and shrubs? 2) Does hydraulic lift occur in grazed and ungrazed tallgrass prairie, and does this impact facilitation for water within grassland communities? 3) What are the patterns and drivers of nocturnal transpiration in common grassland species? 4) How does diel stem sap flow and canopy transpiration vary among common grassland species? I found that bison grazing increased the depth of water uptake by Andropogon gerardii and Rhus glabra, reducing niche overlap with co-occurring species. Conversely, grazing did not affect hydraulic lift, which was generally uncommon and likely limited by nocturnal transpiration. Further, leaf gas exchange measurements indicated that nocturnal transpiration occurred commonly in tallgrass prairie plants and was greatest among grasses and early in the growing season. Nocturnal transpiration was not driven by vapor pressure deficit or soil moisture, as commonly observed in other systems, but was regulated by nocturnal stomatal conductance in most species. Finally, I found that daytime sap flow rates were variable among species and functional types, with larger flux rates among woody species. Nocturnal sap flow rates were more consistent across species, which caused nighttime sap flow and transpiration to account for a larger proportion of daily flux rates in grasses than in forbs or shrubs. These results show that water uptake, water redistribution, and water loss are all influenced by different biotic and abiotic drivers and have varying ecological impacts across a heterogeneous landscape. Additionally, extensive differences in water flux exist among co-occurring species and plant functional groups, which likely reflect varying strategies to tolerate water limitation. These results suggest that shifts in the abundance of these species with future climate changes, or with ecosystem state changes, will likely impact ecosystem-level water balance.
2

Water Use of Landscape Trees During Pot-In-Pot Production and During Establishment in the Landscape

Witmer, Robert K. 03 January 2001 (has links)
Water conservation and pollution concerns from nutrient runoff will very likely dictate precise irrigation regimes for nursery managers in Virginia. Maximum plant growth with minimum input of water and fertilizer is becoming increasingly important. Therefore, water use and growth of red and sugar maple (Acer rubrum L. 'Franksred' and Acer saccharum Marsh.) were studied during two years of pot-in-pot (P+P) production and during three years after transplanting to field soil. Three major experiments were completed. The first experiment studied the effect of frequent irrigation (three-times-a-day) versus standard once-a-day irrigation and found that frequent irrigation increased trunk diameter growth of sugar maples in the second production cycle and for red maples in both production cycles. Height growth of neither species was affected by frequent irrigation. A study of sap flow pattern indicated that late day water stress of red maples was partially alleviated by frequent irrigation. In the second experiment, red and sugar maples were transplanted to field soil after one (1-yr) or two (2-yr) years of P+P production. Irrigation frequency requirement decreased as the trees grew and depended on environmental conditions, size at planting, source of water (rainfall versus irrigation) and species. Height and trunk diameter of 1-yr red maple was equal to that of 2-yr trees after only one year. Height and trunk diameter differences between 1-yr and 2-yr sugar maple trees persisted three years after transplanting. In the third experiment water use of 1-yr and 2-yr red and sugar maple while in P+P production was investigated. Four models of daily water-use were developed. A simple model that is suitable for growers includes species, trunk cross-sectional area (BA) and air temperature (TA) observations. An environmental model was developed using the Penman-van Bavel estimate of evapotranspiration (ET). ET required modifications based on tree characteristics, air temperature, windspeed and relative humidity to be an effective predictor of water-use. A complex model was based on a sine-cosine function of day-of-the-year. This model fits water-use data well for each species and production cycle and includes BA, ET and TA. An alternate simpler model requires only day-of-the-year, TA and BA, offering growers a relatively simple and accurate model of water use. / Ph. D.
3

The role of crack willow in the wetland water balance, Moutere region, New Zealand

Amaravathi, Kiran Kumar January 2010 (has links)
The Waiwhero wetland (16 ha) is one of the largest wetlands in the Rosedale Hills, 35 km north-west of Nelson, New Zealand. It has an extensive cover of Salix fragilis L. (crack willow) and has been hypothesised to be a source of groundwater recharge for the Moutere aquifers, an important local groundwater system. However the wetland could also be a groundwater discharge zone, because of the geological boundary that it straddles. The overall aim of this study was to determine the direction of groundwater flux of the wetland by measuring the water balance, with particular emphasis on the transpiration rates from the crack willow trees. The average daily transpiration (measurement was for 230 days) of crack willows in the wetland (6.4 mm/day) was close to twice the potential evapotranspiration (PET) for grassland (3.9 mm/day). The highest measured willow transpiration rate was 12.4 mm/day and the lowest was 0.8 mm/day. High transpiration from crack willows was due to the horizontal energy fluxes (advective energy), tree physiological characters and high soil water content. The study established that the wetland is a groundwater discharge zone with, on average for the two summer periods (2008 and 2009), the net groundwater discharge being 4.8 mm/day. The daily water balance results between two major rainfall events showed that the initial discharge source was from the surrounding hills and later stabilized at around 6 to 14 mm/day. It was believed to be a contribution from the shallow and deep aquifers or a combination of local region inflow and aquifers. The water balance showed that the main loss of water through the hydrological system of the wetland during summer was from the high transpiration of willows (7.7 mm/day). The extent of water savings estimated for the 16 ha wetland through a hypothetical situation of willow removal, and the assumption that it is filled with open water without any canopy cover, was 688 m3/day. However this water savings rate if applied to a large area of crack willow stands would be quite high. On similar lines it is important to understand the transpiration rates of other wetland tree species in New Zealand. This information would help in preparing regional council plans for the introduction of tree species in the wetland for better management of the water resources and sustainable ecosystem management.
4

Srovnání různých přístupů k hodnocení energetické bilance stromů / Comparison of various approaches to evaluation of tree energetic balance

Tomková, Alžběta January 2014 (has links)
The thesis deals with the tree energetic balance closely related to the phenomenon of plant transpiration. Living systems have a unique ability to equilibrate gradients in the nature. Storing energy of the incoming solar radiation into a latent heat of water evaporation is an example of such tree feature. It dissipates energy and simultaneously recycles nutrients and water in the ecosystem. There are few possible ways of energy balance detection shown in this work. The thermal imagining can be used as a method for an indirect indication of transpiration - transpiring plants have lower leaf surface temperature. An alternative method for determining the rate of transpiration is a direct measurement of transpiration on leaves or transpiration flow in a tree trunk. However, extrapolation of the above mentioned methods to entire stands can encounter some difficulties. The first part of the thesis presents a description of a physical background of energetic processes and the ways in which plants operate with water, the biotic pump theory is being discussed. The practical part begins with experiments on single leaves. These experiments are carried out to test the usability of the methods for the following experiments, which are performed on the entire living trees. They are focused on the relationship of the...
5

Medida e modelagem da evapo(transpi)ração de um canavial irrigado em função do manejo da palhada / Evapo(transpi)ration measument and modeling of irrigated sugarcane depending on trash management

Carvalho, Kassio dos Santos 13 January 2017 (has links)
A cultura da cana é importante para o agronegócio brasileiro. O manejo adequado da palhada da cana-de-açúcar no solo pode influenciar no desenvolvimento e no crescimento da cultura, podendo resultar em ganhos ambientais e econômicos. Neste trabalho, objetivou-se avaliar o efeito do manejo com palha (CP) e sem palha (SP) na evapotranspiração de um canavial irrigado. Um experimento foi conduzido em canavial irrigado com dois tratamentos (mantendo-se 100% da palhada e sem cobertura de palha sobre o solo). Neste experimento, a evapotranspiração foi medida a partir do balanço hídrico \"in situ\" do solo (ETc-BHS) e pelo método da razão de Bowen (ETc-MRB) e a transpiração utilizando-se sensores de fluxo de seiva (FS). A evaporação do solo foi estimada com base em dados da cultura e meteorológicos. A modelagem da transpiração e de seus componentes baseou-se na abordagem no \"modelo da grande folha\" (\"big leaf model\") proposto por Monteith. Para tanto, foram definidos e avaliados submodelos para a simulação do saldo de radiação no dossel, da resistência aerodinâmica, da resistência de cobertura no ambiente da cultura. Ao longo do ciclo da cultura, análises biométricas foram realizadas a cada 30 dias e esses dados utilizados na parametrização do modelo. O desempenho dos submodelos e do modelo parametrizado de Penman-Monteith (PM) foi estatisticamente avaliados. Avalia-se um modelo para estimativa da evaporação em função da cobertura da palhada. O cultivo de cana-de-açúcar utilizando os resíduos vegetais favorece o incremento da transpiração, da evapotranspiração da cultura (ETc) e reduz a evaporação de água no solo. A palha influenciou as variáveis biométricas da cultura, como perfilhamento, massa fresca da parte aérea (MFPA) e massa seca da parte aérea (MSPA). Ao relacionar a transpiração estimada com o modelo de PM com a medida com FS, verifica-se um coeficiente de determinação (R2) de 0,72 e de 0,48 e um coeficiente angular (a) de 1,22 e 0,92, para a área manejada CP e SP, respectivamente. A evaporação de água no solo é maior na área SP, principalmente nos períodos com precipitações acima de 40 mm. Quando se relaciona a ETc-BHS e a ETc-MRB com a ETc estimada com base no método de PM, nota-se um R2 de 0,67 e 0,54 na área CP e 0,59 e 0,54 para a área SP, respectivamente. Independente do manejo adotado, aos 302 dias após o corte, o canavial apresentou ATR, POL e % de fibra ideal para a comercialização. O teor de clorofila na área manejada CP é superior ao manejado SP. O cultivo de cana-de-açúcar utilizando os resíduos vegetais favorece o incremento da transpiração, da ETc e reduz a evaporação de água no solo. / Cane culture is important for Brazilian agribusiness. Proper management of sugarcane trash in the soil can influence the development and growth of the crop, which can result in environmental and economic gains. The objective of this study was to evaluate the effect of trash management (CP) and without trash (SP) on the evapotranspiration of an irrigated sugar cane. An experiment was conducted in irrigated sugar cane fields with two treatments (100% of the trash and without trash cover on the soil). In this experiment, evapotranspiration was measured from soil water balance (ETc-BHS) and the Bowen ratio method (ETc-MRB) and transpiration using sap flow sensors (FS). Soil evaporation was estimated based on crop and meteorological data. The modeling of the transpiration and its components was based on the approach in the \"big leaf model\" proposed by Monteith. For that, submodels were defined and evaluated for the simulation of canopy radiation balance, aerodynamic resistance, and cover resistance in the culture environment. Throughout the crop cycle, biometric analyzes were performed every 30 days and these data were used in the parameterization of the model. The performance of the submodels and the parameterized model of Penman-Monteith (PM) was statistically evaluated. A model for estimation of evaporation is evaluated as a function of the trash cover. The cultivation of sugarcane using the vegetal residues favors the increase of transpiration, evapotranspiration of the crop (ETc) and reduces the evaporation of water in the soil. The trash influenced the biometric variables of the crop, such as tillering, fresh mass of aerial part (MFPA) and dry mass of aerial part (MSPA). When correlating the estimated transpiration with the PM model with the FS measurement, it is verified a determination coefficient (R2) of 0.72 and 0.48 and an angular coefficient (a) of 1.22 and 0.92, for the managed area CP and SP, respectively. The water evaporation in the soil is higher in the SP area, especially in periods with rainfall above 40 mm. When ETc-BHS and ETc-MRB are related to ETc estimated on the basis of the PM method, an R2 of 0.67 and 0.54 is observed in the CP area and 0.59 and 0.54 for the area SP, respectively. Regardless of the management adopted, at 302 days after cutting, the sugarcane plantation presented ATR, POL and% of fiber ideal for commercialization. The chlorophyll content in the managed area CP is superior to the managed SP. The cultivation of sugarcane using the vegetal residues favors the increase of the transpiration, ETc and reduces the evaporation of water in the soil.
6

Medida e modelagem da evapo(transpi)ração de um canavial irrigado em função do manejo da palhada / Evapo(transpi)ration measument and modeling of irrigated sugarcane depending on trash management

Kassio dos Santos Carvalho 13 January 2017 (has links)
A cultura da cana é importante para o agronegócio brasileiro. O manejo adequado da palhada da cana-de-açúcar no solo pode influenciar no desenvolvimento e no crescimento da cultura, podendo resultar em ganhos ambientais e econômicos. Neste trabalho, objetivou-se avaliar o efeito do manejo com palha (CP) e sem palha (SP) na evapotranspiração de um canavial irrigado. Um experimento foi conduzido em canavial irrigado com dois tratamentos (mantendo-se 100% da palhada e sem cobertura de palha sobre o solo). Neste experimento, a evapotranspiração foi medida a partir do balanço hídrico \"in situ\" do solo (ETc-BHS) e pelo método da razão de Bowen (ETc-MRB) e a transpiração utilizando-se sensores de fluxo de seiva (FS). A evaporação do solo foi estimada com base em dados da cultura e meteorológicos. A modelagem da transpiração e de seus componentes baseou-se na abordagem no \"modelo da grande folha\" (\"big leaf model\") proposto por Monteith. Para tanto, foram definidos e avaliados submodelos para a simulação do saldo de radiação no dossel, da resistência aerodinâmica, da resistência de cobertura no ambiente da cultura. Ao longo do ciclo da cultura, análises biométricas foram realizadas a cada 30 dias e esses dados utilizados na parametrização do modelo. O desempenho dos submodelos e do modelo parametrizado de Penman-Monteith (PM) foi estatisticamente avaliados. Avalia-se um modelo para estimativa da evaporação em função da cobertura da palhada. O cultivo de cana-de-açúcar utilizando os resíduos vegetais favorece o incremento da transpiração, da evapotranspiração da cultura (ETc) e reduz a evaporação de água no solo. A palha influenciou as variáveis biométricas da cultura, como perfilhamento, massa fresca da parte aérea (MFPA) e massa seca da parte aérea (MSPA). Ao relacionar a transpiração estimada com o modelo de PM com a medida com FS, verifica-se um coeficiente de determinação (R2) de 0,72 e de 0,48 e um coeficiente angular (a) de 1,22 e 0,92, para a área manejada CP e SP, respectivamente. A evaporação de água no solo é maior na área SP, principalmente nos períodos com precipitações acima de 40 mm. Quando se relaciona a ETc-BHS e a ETc-MRB com a ETc estimada com base no método de PM, nota-se um R2 de 0,67 e 0,54 na área CP e 0,59 e 0,54 para a área SP, respectivamente. Independente do manejo adotado, aos 302 dias após o corte, o canavial apresentou ATR, POL e % de fibra ideal para a comercialização. O teor de clorofila na área manejada CP é superior ao manejado SP. O cultivo de cana-de-açúcar utilizando os resíduos vegetais favorece o incremento da transpiração, da ETc e reduz a evaporação de água no solo. / Cane culture is important for Brazilian agribusiness. Proper management of sugarcane trash in the soil can influence the development and growth of the crop, which can result in environmental and economic gains. The objective of this study was to evaluate the effect of trash management (CP) and without trash (SP) on the evapotranspiration of an irrigated sugar cane. An experiment was conducted in irrigated sugar cane fields with two treatments (100% of the trash and without trash cover on the soil). In this experiment, evapotranspiration was measured from soil water balance (ETc-BHS) and the Bowen ratio method (ETc-MRB) and transpiration using sap flow sensors (FS). Soil evaporation was estimated based on crop and meteorological data. The modeling of the transpiration and its components was based on the approach in the \"big leaf model\" proposed by Monteith. For that, submodels were defined and evaluated for the simulation of canopy radiation balance, aerodynamic resistance, and cover resistance in the culture environment. Throughout the crop cycle, biometric analyzes were performed every 30 days and these data were used in the parameterization of the model. The performance of the submodels and the parameterized model of Penman-Monteith (PM) was statistically evaluated. A model for estimation of evaporation is evaluated as a function of the trash cover. The cultivation of sugarcane using the vegetal residues favors the increase of transpiration, evapotranspiration of the crop (ETc) and reduces the evaporation of water in the soil. The trash influenced the biometric variables of the crop, such as tillering, fresh mass of aerial part (MFPA) and dry mass of aerial part (MSPA). When correlating the estimated transpiration with the PM model with the FS measurement, it is verified a determination coefficient (R2) of 0.72 and 0.48 and an angular coefficient (a) of 1.22 and 0.92, for the managed area CP and SP, respectively. The water evaporation in the soil is higher in the SP area, especially in periods with rainfall above 40 mm. When ETc-BHS and ETc-MRB are related to ETc estimated on the basis of the PM method, an R2 of 0.67 and 0.54 is observed in the CP area and 0.59 and 0.54 for the area SP, respectively. Regardless of the management adopted, at 302 days after cutting, the sugarcane plantation presented ATR, POL and% of fiber ideal for commercialization. The chlorophyll content in the managed area CP is superior to the managed SP. The cultivation of sugarcane using the vegetal residues favors the increase of the transpiration, ETc and reduces the evaporation of water in the soil.
7

Transpiration, Growth And Survival Of Native Riparian And Introduced Saltcedar Trees In Mixed Stands On The San Pedro River, U.S.A.

McGuire, Roberta Delehanty January 2015 (has links)
Western riparian zones have undergone significant landscape changes over the past several decades, with introduced saltcedar (Tamarix spp.) as a crucial component of this transformation. Saltcedar, now a dominating presence along many western rivers, due to its high tolerance to drought, salinity and stress, is considered to be a high-water-use plant that can desiccate disturbed river systems. Where native and saltcedar plant communities occur together, it is important to understand water use patterns and the physiological responses of each species to environmental stress factors, as a way to project an eventual course of succession processes and management options at a given site. Stress and disturbance in the form of reduced stream flows and land use changes may influence these interactions. Understanding the conditions that allow for saltcedar dominance is critical in determining riparian water budgets, and developing effective management strategies. Sap flux sensors were used to measure the physiological response of co-occurring communities of saltcedar and native trees to these environmental stress factors during the pre-monsoon period in early summer, a time of maximum stress for riparian vegetation. The results suggest that native trees are still competitive with salt cedar so that a mixed plant community is likely to continue on the San Pedro River on the condition that current groundwater levels and river flows are maintained. If base flows and depth to groundwater continue to decline, this competitive balance between saltcedar and native trees likely could change.
8

Methods for Measuring Tamarisk (Tamarix spp.) Water Use on Two Sub-Watersheds in The Western United States as Impacted by The Tamarisk Leaf Beetle (Diorhabda spp.)

Pearlstein, Susanna Lee January 2015 (has links)
The Dolores River in Utah and the Virgin River in Nevada are ecosystems under pressure from increased groundwater withdrawal due to growing human populations, climate change and introduced species such as Tamarix spp. (tamarisk). Tamarisk is reputed to take excessive water from its environment. Controlling tamarisk is of concern in the western United States where plants grow quickly in already fragile and diminishing riparian areas. For this reason, biologic control beetles Chrysomelidae: Diorhabda carinulata were released to weaken the tamarisk population, thus reducing its water use. The studies for this dissertation were conducted between 2010 and 2011. We quantified tamarisk water use over multiple cycles of annual defoliation using sap flow measurements, leaf area index (LAI), well data, allometry and satellite imagery from EOS-1 Moderate Resolution Imaging Spectrometer (MODIS) sensor. Study objectives for the Virgin River were to measure evapotranspiration (ET) before beetles ever arrived and to examine the effects on tamarisk ET in the year after beetle arrival. This site showed plant ET from sap flow averaged about 4.3 mm m⁻² leaf day⁻¹ in 2010. In 2011, ET from sap flow averaged 6.4 mm m⁻² leaf area day⁻¹ pre beetle arrival, but dropped to 3-4 mm m⁻² leaf area day⁻¹ after beetle arrival. Stand level ET measured by MODIS was 2.2 mm d⁻¹ in 2010 and approximately 1.5 mm day⁻¹ when beetle arrival was measured in 2011. Significant visual change was apparent as the trees senesced. Results showed the first year of beetle arrival resulted in reduced ET but did not result in significant water savings. We also compared the reaction of the newly defoliated (in 2011) Virgin River site to the long-term defoliated (since 2007) Dolores River site to explore if all beetle invasions were created equal. This paper views the two sites as fairly extreme examples of tamarisk stand reaction to the beetle. While no mortality was reported at the Dolores River site, the site is much older, less photosynthetically active and covers far less ground when compared to the younger tamarisk monoculture on the Virgin River. Pre-beetle arrival Normalized Difference Vegetation Index (NDVI) values were higher on the Virgin River than on the Dolores River. Beetle arrival at each site was captured with Landsat NDVI and a reduced NDVI signal (13% drop in NDVI at Dolores River, 5% drop at Virgin River) was seen after beetle arrival.
9

Determinação da transpiração da cana-de-açúcar por métodos térmicos / Determination of transpiration of sugarcane by thermal methods

Boehringer, Davi 28 July 2010 (has links)
Made available in DSpace on 2015-03-26T13:50:07Z (GMT). No. of bitstreams: 1 texto completo.PDF: 2973860 bytes, checksum: 9a5b7c9ac54c42849ba6e4ec6a3f1759 (MD5) Previous issue date: 2010-07-28 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / The main objective of this research was to evaluate the applicability of thermal methods for measuring sugarcane sap flow under different environmental conditions. For the evaluation of methods (energy balance and heat pulse) measurement events were conducted in a greenhouse according to the transpiration and the sugarcane sap flow under cloudy skies and partly cloudy conditions. The experiment was conducted at the experimental field of Agricultural Meteorology sector from the Department of Agricultural Engineering, Federal University of Viçosa, Minas Gerais. The monitoring of meteorological data within the greenhouse was performed by a computerized data acquisition. It was able to monitor the sap flow from the due sugarcane culture and control the electric power applied to the resistive terminals of the heat source. Based on the results, was noticed that the water needing for the sugarcane culture in hourly and daily scale, may be adequately determined by means of sap flow measurements for using the method of energy balance according to the segment of stem. However, even with the large volume of stored sap in the stems and the low sap flow speed compared to other cultures, the heat pulse method could not be implemented through the methodology proposed on a classical knowledge literature. Only with the application of longer pulses in a scale of minutes instead of seconds, it was possible to detect temperature variations that could be measured by the current data acquisition system. Thus such in order to be applied to the studied sugarcane, the theory of heat pulse method needs to be adapted from specific studies in that matter. It was noticed that, both as the low stream temperature, as the high stream temperature of the heat source show differences after the application of heat pulse in different times of the day, responding with transpiration changing compared to a day of clear skies. It was also observed that the component of heat storage in the stem cannot be disregarded for the energy balance as proposed by some authors for measurements performed in other cultures. Moreover, considering the significant diameter of the stems is necessary to install four thermocouples to obtain the temperature of the sap in the levels above and below from the heat source, two from those inserted in the center and other two in its surface. An additional thermocouple should be placed in the center of the blanket insulation, at the heat source, to quantify the axial and radial conduction of heat. The transpiration of individual sugarcane plants was slightly underestimated by the method of energy balance in the hourly scale (RMSE = 14,6 g planta-1 h-1; MBE = -4,7 g planta-1 h-1; r = 0,9065; d = 0,9432) and daily (RMSE = 97,1 g planta-1 d-1; MBE = -56,2 g planta-1 d-1; r = 0,9369; d = 0,9488), with differences about 4% compared to maximum values of transpiration measured. With the procedure of the new research for improvement of this technique, the energy balance method has great potential to become a referential technique for calibration of other similar methods in order to quantify the water flow of vapor from sugarcane to the atmosphere. / O objetivo principal foi avaliar a aplicabilidade de métodos térmicos para medição do fluxo de seiva da cana-de-açúcar sob condições ambientais distintas. Para a avaliação dos métodos (balanço de energia e pulso de calor), foram realizadas campanhas de medição da transpiração e do fluxo de seiva da cana-de-açúcar em uma casa de vegetação. O experimento foi conduzido na área experimental do setor de Meteorologia Agrícola, pertencente ao Departamento de Engenharia Agrícola da Universidade Federal de Viçosa, Minas Gerais. O monitoramento dos dados meteorológicos no interior da casa de vegetação foi realizado por meio de um sistema computadorizado de aquisição de dados. Ele foi capaz de monitorar o fluxo de seiva da cana-de-açúcar e de controlar a potência elétrica aplicada nos terminais resistivos da fonte de calor. Constatou-se que as necessidades hídricas da cultura da cana-deaçúcar, em escala horária e diária, podem ser determinadas, de forma adequada, por meio de medições do fluxo de seiva com o método do balanço de energia em um segmento de caule. No entanto, em decorrência do grande volume de seiva armazenada nos colmos e da baixa velocidade de deslocamento da seiva em comparação com outras culturas, o método do pulso de calor não pôde ser implementado por meio da metodologia clássica proposta na literatura. Somente com a aplicação de pulsos mais prolongados, em escala de minutos ao invés de segundos, foi possível detectar variações de temperatura que pudessem ser mensuradas pelo sistema de aquisição de dados. Desta forma, para que possa ser aplicada para a cana-de-açúcar, a teoria do método do pulso de calor precisa ser adaptada a partir de estudos específicos. Notou-se que, tanto a temperatura da seiva acima, quanto a temperatura abaixo da fonte de aquecimento comportam-se de maneira distintas após a aplicação do pulso de calor nos diversos horários do dia, respondendo às variações da transpiração para um dia de céu claro. Foi observado também que o componente do armazenamento de calor no caule não pode ser desconsiderado no balanço de energia como foi proposto por alguns autores para medições realizadas em outras culturas. Por outro lado, devido ao diâmetro expressivo dos colmos, é necessário instalar quatro termopares para obtenção da temperatura da seiva nos níveis acima e abaixo da fonte de aquecimento, sendo dois inseridos no centro e outros dois na superfície do colmo. Um termopar adicional deve ser colocado no centro da manta de isolamento térmico, ao nível da fonte de aquecimento, para quantificação da condução axial e radial de calor. A transpiração de plantas individuais de cana-de-açúcar foi ligeiramente subestimada pelo método do balanço de energia em escala horária (RMSE = 14,6 g planta-1 h-1; MBE = -4,7 g planta-1 h-1; r = 0,9065; d = 0,9432) e diária (RMSE = 97,1 g planta-1 d-1; MBE = -56,2 g planta-1 d-1; r = 0,9369; d = 0,9488), com diferenças da ordem de 4% em relação aos valores máximos de transpiração medidos. Com a realização de novas pesquisas para aprimoramento desta técnica, o método do balanço de energia tem grande potencial para se tornar a técnica de referência na calibração de outros métodos utilizados para quantificação do fluxo de vapor d’água da cana-de-açúcar para a atmosfera.
10

Estimating Evapotranspiration of a Riparian Forest Using Sap Flow Measurements

Solum, James R 01 June 2020 (has links)
To close the water use budget of irrigated agricultural fields in floodplains with substantial riparian corridors, it is necessary to understand groundwater usage by dominant phreatophytic vegetation, particularly when the primary source of water for irrigation comes from groundwater abstraction. We report here results of estimated evapotranspiration (ET) of a riparian forest, which were based on measurements of sap flow in phreatophytic vegetation within a riparian corridor. The riparian corridor was within a study area 75 to 140 meters wide in the lower portion of the Scotts Creek watershed, which is bounded to the west by the Pacific Ocean in Santa Cruz County, California. Canopy coverage in the study area often approaches 100% during the growing season, with dominant trees being red alder (Alnus rubra Bong.), arroyo willow (Salix lasiolepis Benth.), and pacific willow (Salix lasiandra Benth. var. lasiandra). Other trees include boxelder (Acer negundo L.), bigleaf maple (Acer macrophyllum Pursh.), California bay laurel (Umbellularia californica (Hook. & Arn.) Nutt.), and coastal redwoods (Sequoia sempervirens (D. Don) Endl.). Common understory vegetation includes California blackberry (Rubus ursinus Cham. and Schlecht.), stinging nettle (Urtica dioica subsp. gracilis L.), poison hemlock (Conium maculatum L.), Cape ivy (Delairea odorata Lem.), Italian thistle (Carduus pycnocephalus L. subsp. pycnocephalus), and western poison oak (Toxicodendron diversilobum (Torr. & A. Gray) Greene). We hypothesized that the ET of a riparian forest could be estimated by measuring the sap flow of riparian phreatophytic trees. For the study reported here, only the two most dominant phreatophytic species, namely red alders and arroyo willows, were instrumented with thermal dissipation probes. In addition to diurnal fluctuations, sap flow data collected hitherto also showed expected seasonal variation with summer maxima and winter minima, with transition fall and spring periods. Sap flow measurements from the study area were used to estimate riparian forest ET by projecting them across the canopy areal extent of the riparian forest using sampled tree sapwood areas from six sample plots. The sap flow-based ET results were then compared to ET results reported by two other methods. Additional research, including increased number of trees with thermal dissipation probes, further analysis of sap flow behavior, and continued long-term measurement of sap flow, is needed to further improve the method of using long-term sap flow measurements to estimate the ET of a riparian forest.

Page generated in 0.0607 seconds