1 |
Satellite cells in human skeletal muscle : molecular identification quantification and function / Satellitceller i human skelettmuskulatur : molekylär identifiering, kvantifiering och funktionLindström, Mona January 2009 (has links)
Skeletal muscle satellite cells located between the plasma membrane and the basal lamina of muscle fibres, could for many years, only be studied in situ by electron microscopy. The introduction of immunohistochemistry and the discovery of molecular markers of satellite cells then made them accessible for light microscopic studies and a wealth of information is today available. Satellite cells are myogenic stem cells that can be activated from a quiescent state to proliferate for self-renewal or differentiate into myogenic cells. The satellite cells are involved in muscle growth during fetal and postnatal development and play a key role in repair and regeneration of damaged muscle fibres. The satellite cells are also essential for muscle fibre hypertrophy and maintenance of muscle mass in the adult. When the present thesis was initiated, studies on satellite cells in human skeletal muscle relied on the neuronal cell adhesion molecule (NCAM) as a marker for satellite cell identification. The results from different studies varied markedly. Therefore the aims of the present thesis were i) to develop a highly reliable method using light microscopy for satellite cell identification and quantification in biopsies of human skeletal muscle in normal and pathological conditions. A molecular marker for the myofibre basal lamina or plasma membrane to enhance the reliability of myonuclei and satellite cell identification were to be included. Furthermore unbiased morphometric methods should be used in the quantification process. ii) to evaluate which molecular markers which had been described for satellite cell and stem cell identification in different cell states (quiescence, activated or differentiated) are the most useful for studies on human skeletal muscle. iii) to further explore the function and heterogeneity of satellite cells with respect to different markers in human skeletal muscle by studying the effects of strength-training, intake of anabolic substances and pathological conditions. A new immunofluorescence method was developed where in the same tissue section, two satellite cell markers, the basal lamina and nuclei were monitored. From the evaluation of different markers it was found that both NCAM and Pax7 identified the majority of satellite cells but that both markers were needed for reliable identification. The members of the myogenic regulatory family were evaluated and by using the new method MyoD and myogenin were found to be useful markers to identify activated and differentiated satellite cells. Upon re-examination of biopsies from power-lifters, power-lifters using anabolic substances and untrained subjects it was observed that the new results on satellite cell frequency were significantly different from those obtained when using staining for NCAM and nuclei alone. In addition three subtypes of satellite cells (94.4% NCAM+/Pax7+, 4.2% NCAM+/Pax7– and 1.4% NCAM–/Pax7+) were observed. Thus the multiple marker method gave more information about satellite cells heterogeneity in human muscle and we propose that this is more reliable than previous methods. Low numbers of MyoD or myogenin stained satellite cells were observed in both untrained and strength trained subjects. Other markers such as DLK1/FA1, a member of the EGF-like family and c-Met, the receptor for hepatocyte growth factor showed that satellite cell heterogeneity in human muscle is far greater than previously shown. Furthermore, new evidence is presented for so called fibre splitting observed in hypertrophic muscle fibres to be due to defect regeneration of partially damaged fibres.
|
Page generated in 0.0627 seconds