• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 30
  • 29
  • 14
  • 11
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Absolute geopotential height system for Ethiopia

Bedada, Tullu Besha January 2010 (has links)
This study used airborne gravity data, the 2008 Earth Gravity Model (EGM08) and Shuttle Radar Topographic Mission (SRTM) digital elevation data in a ‘Remove-Compute-Restore’ process to determine absolute vertical reference system for Ethiopia. This gives a geopotential height at any isolated field point where there is a Global Navigation Satellite System (GNSS) measurement without reference to a vertical network or a regional datum point. Previously, height was determined conventionally by connecting the desired field point physically to a nearby bench mark of a vertical network using co-located measurements of gravity and spirit levelling. With the use of precise GNSS positioning and a gravity model this method becomes obsolesce. The new approach uses the ‘Remove-Restore’ process to eliminate longer to shorter wavelengths from the measured gravity data using EGM08 and geometrical and condensed gravity models of the SRTM data. This provides small, smooth and localised residuals so that the interpolation and integration involved is reliable and the Stokes-like integral can be legitimately restricted to a spherical cap. A very fast, stable and accurate computational algorithm has been formulated by combining ‘hedgehog’ and ‘multipoint’ models in order to make tractable an unavoidably huge computational task required to remove the effects of about 1.5 billion! SRTM topographic mass elements representing Ethiopia and its immediate surroundings at 92433 point airborne gravity observations. The compute stage first uses an iterative Fast Fourier Transform (FFT) to predict residual gravity at aircraft height as a regular grid on to the surface of the ellipsoidal Earth and then it used a Fourier operation equivalent to Stokes’ integral to transform the localised gravity disturbance to residual potential. The restore process determines the geopotential number on or above the Earth’s surface where practitioners need it by restoring the potential effects of the removed masses. The accuracy of the geopotential number computed from gravity and topography was evaluated by comparing it with the one derived directly from EGM08 and precise geodetic levelling. The new model is in a good agreement across 100 km baseline with a standard deviation of 56 10−2 2 −2 × m s and 39 10−2 2 −2 × m s relative to EGM08 and levelling, respectively ( 10−2 2 −2 m s is approximately equivalent to 1mm of height). The new method provides an absolute geopotential height of a point on or above the Earth’s surface in a global sense by interpolating from geopotential models prepared as the digital grids carried in a chip for use with the GNSS receiver in the field.
12

Investigation : an Australian domestic communications satellite system

Burdlmayr, G. R., n/a January 1981 (has links)
The boom in data communications that started in the 1960s is a long way from abating. The early and mid 1980s will see a new generation of digital data transmission services come into operation that could change the ways business is conducted. "Information management and exploitation will change the fabric of society", according to Nicolas Mokhoff, Associate Editor of IEEE Spectrum Magazine. Manipulated by microelectronic, computer, radio and other electronic disciplines, information has become a vital commodity at the trade exchange. But unlike the prices of most commodities today, the price for exchange of information is decreasing because of electronics. One of the principal contributors to this decrease has been the geosynchronous telecommunications satellite, due to rapid advances in space and communications technology and the resulting cost-effectiveness achieved in applying that technology. Advances in IC technology have made digital telephony an equal partner with analogue. The inherent advantages of digital reliability, low cost and smaller packaging are prompting Telecom to phase out present equipment and expand new services with a digital hierarchy, such as the Digital Data Service being introduced in late 1982. Services employing advanced satellite and microwave technology, and also the existing and upgraded telephone systems, will have at least two things in common: they will transmit and switch data digitally, including coded speech, and the data will be transmitted in bursts. The technology that may expand fastest is the second generation of commercial communications satellites. Pier Bargellini, a senior scientist at Comsat Laboratories, says that "without the use of satellites as reflectors for source and data channels, television signals could not be shared by remote areas, long-distance telephone services would be constricted and the data exchange for the business world would be hampered." Changes in the communications industry have been so dramatic (particularly with regard to satellites) that government bodies (including the Australian Federal Government) have been forced to reexamine long-standing communications practices. In October 1979 the Minister for Post and Telecommunications announced the Governments decision that it would be in the national interest to establish a communications satellite system for Australia. At that time, the Minister also announced that, a Satellite Project Office would be established within the Postal and Telecommunications Department to set in train the planning activities necessary for the introduction of the system. The SPO has been operational within the Department since late 1979, and 2. consultation of system service requirements in particular has involved liaison with a broad spectrum of interests including Commonwealth departments. Figure 1 of Appendix A testifies to the Australian Government's policy of supplying outback communities with improved communications services (including television) by using satellite facilities. Very little is known about the benefits and needs (in Australia) that a data communications satellite system might be able to fulfil, including those needs of the Department of Social Security. This is mainly due to the lack of specific details about the final configurations and costs of the separate satellite services, which wont be known until late 1981. This paper is , therefore, an initial but detailed examination of the hardware and software subsystems which constitute a domestic telecommunications satellite system. More specifically, the paper considers the on-board equipment of a communications satellite (the space segment - including satellite launch and orbit characteristics, and signal propagation delay and attenuation), and the earth stations (the ground segment - including signal modulation, multiple access and computer application considerations); all as dictated by Australian geographical, economic and communications traffic density characteristics. The paper then considers some of the possible methods Australian corporations and government departments may adopt to utilise satellite communications links, particularly for data communications. A second paper will re-examine the situation by applying the specific facilities and costs, when they are known (these will be announced by the Satellite Project Office after contracts for the space and ground segments have been let), to a large, low-traffic, interactive multipoint network such as that of the Department of Social Security.
13

Investigações preliminares sobre a influência do clima espacial no posicionamento relativo com GNSS

Dal Poz, William Rodrigo [UNESP] 03 November 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:30:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-11-03Bitstream added on 2014-06-13T19:00:44Z : No. of bitstreams: 1 dalpoz_wr_dr_prud.pdf: 7310354 bytes, checksum: 0dad0c578066121061e36552e4e9f136 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O erro devido à ionosfera nas observáveis GNSS (Global Navigation Satellite System) é diretamente proporcional à densidade de elétrons presente na ionosfera e inversamente proporcional a frequência do sinal. Da mesma forma que no posicionamento por ponto, os resultados obtidos no posicionamento relativo são afetados pelo efeito sistemático da ionosfera, que é uma das maiores fontes de erro no posicionamento com GNSS. Mesmo considerando que parte dos erros devido à ionosfera é cancelada na dupla diferenciação, a ionosfera pode causar fortes impactos no posicionamento relativo. O problema principal neste método de posicionamento é a variação espacial na densidade de elétrons, que pode ocorrer em função de vários fatores, tais como hora local, variação sazonal, localização do usuário, ciclo solar e atividade geomagnética. Dependendo das condições do clima espacial, que é controlado pelo Sol, a atividade geomagnética pode ser alterada de forma significativa, dando origem a uma tempestade geomagnética. Nesta pesquisa foram avaliados os efeitos da ionosfera no posicionamento relativo, com observações GNSS da fase da onda portadora (L1), nas regiões ionosféricas de latitude média e alta e na região equatorial. Nas duas primeiras regiões foram analisados os efeitos da ionosfera em períodos de irregularidades, decorrentes de tempestades geomagnéticas. Na região equatorial, que engloba o Brasil, foram analisados os efeitos da ionosfera em função da variação diária e sazonal. No processamento dos dados GNSS foi utilizado o GPSeq, que processa os dados na forma recursiva e fornece os Resíduos Preditos da Dupla Diferença da Fase (RPDDF)... / The error caused by ionosphere on GNSS (Global Navigation Satellite System) is directly proportional to the density of electrons from ionosphere and inversely proportional to the frequency squared of the signal GNSS. As in the case of point positioning, results in relative positioning are affected by systematic effect from ionosphere, which is one of major error sources in the GNSS positioning. Although some errors caused by ionosphere are canceled in double difference, strong impacts may be caused by ionosphere on the relative positioning. In this positioning the main problem is the spatial variation in electron density that can occur due local time, seasonal variation, user location, solar cycle, geomagnetic activity, etc. Depending on the conditions of space weather, in which is controlled by the Sun, the geomagnetic activity can be changed inducing geomagnetic storms. In this research the effects from ionosphere has been evaluated in GNSS relative positioning using L1 carrier phase observations, at the three regions of the ionosphere: middle and high latitudes and equatorial region. In regions of middle and high latitudes have been analyzed the effects from ionosphere in irregularities periods, caused by geomagnetic storms. In the equatorial region, including Brazil, have been analyzed the effects from ionosphere according daily and seasonal variation. In the processing GNSS data has been used GPSeq software. This software processes the data in a recursive form and provides the Predicted Residual of Carrier Phase Double Difference (PRCPDD) ... (Complete abstract click electronic access below)
14

Satellite Dispersion in Narrow Spaces: A New Urban Campus Diagram

Moon, Jiyoung 14 October 2013 (has links)
No description available.
15

SPACE-BASED TELEMETRY AND RANGE-SAFETY STUDY TRANSCEIVER AND PHASED-ARRAY ANTENNA DEVELOPMENT

Whiteman, Don, Sakahara, Robert, Kolar, Ray 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The transmission of high-rate telemetry data for space-based relay systems yields unique system requirements. The NASA Space-based Telemetry and Range-Safety (STARS) study evaluated system design requirements during Phase-1 flight tests. STARS Phase-2 efforts include the development of a high-rate transmitter and antenna system to demonstrate prototype system performance capabilities and new technologies for future operational systems to be incorporated into the NASA Next Generation Launch Technology (NGLT) vehicles. Phase-2 Range User (telemetry) system performance requirements and a prototype implementation approach are presented.
16

SPACE-BASED TELEMETRY AND RANGE-SAFETY STUDY TEST RESULTS AND FUTURE OPERATIONAL SYSTEM GOALS

Whiteman, Don, Sakahara, Robert 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / The use of remote ground stations for telemetry data-relay in space launch applications is costly and limits the geographic locations for launches of future Reusable Launch Vehicle (RLV) systems. The National Aeronautics and Space Administration Space-based Telemetry and Range-Safety (STARS) Study is investigating the use of satellite data relay systems as a replacement or supplement for ground-based tracking and relay stations. Phase-1 of STARS includes flight testing that evaluates satellite data-relay feasibility, defines satellite system performance limitations, and generates requirements for the development of future satellite telemetry data relay systems. STARS Phase-1 ground-test results and goals for the Phase-2 system development and flight-testing are also presented.
17

Investigações preliminares sobre a influência do clima espacial no posicionamento relativo com GNSS /

Dal Poz, William Rodrigo. January 2010 (has links)
Orientador: Paulo de Oliveira Camargo / Banca: João Francisco Galera Monico / Banca: Edvaldo Simões da Fonseca Junior / Banca: Cláudia Pereira Krueger / Banca: Moisés Ferreira Costa / Resumo: O erro devido à ionosfera nas observáveis GNSS (Global Navigation Satellite System) é diretamente proporcional à densidade de elétrons presente na ionosfera e inversamente proporcional a frequência do sinal. Da mesma forma que no posicionamento por ponto, os resultados obtidos no posicionamento relativo são afetados pelo efeito sistemático da ionosfera, que é uma das maiores fontes de erro no posicionamento com GNSS. Mesmo considerando que parte dos erros devido à ionosfera é cancelada na dupla diferenciação, a ionosfera pode causar fortes impactos no posicionamento relativo. O problema principal neste método de posicionamento é a variação espacial na densidade de elétrons, que pode ocorrer em função de vários fatores, tais como hora local, variação sazonal, localização do usuário, ciclo solar e atividade geomagnética. Dependendo das condições do clima espacial, que é controlado pelo Sol, a atividade geomagnética pode ser alterada de forma significativa, dando origem a uma tempestade geomagnética. Nesta pesquisa foram avaliados os efeitos da ionosfera no posicionamento relativo, com observações GNSS da fase da onda portadora (L1), nas regiões ionosféricas de latitude média e alta e na região equatorial. Nas duas primeiras regiões foram analisados os efeitos da ionosfera em períodos de irregularidades, decorrentes de tempestades geomagnéticas. Na região equatorial, que engloba o Brasil, foram analisados os efeitos da ionosfera em função da variação diária e sazonal. No processamento dos dados GNSS foi utilizado o GPSeq, que processa os dados na forma recursiva e fornece os Resíduos Preditos da Dupla Diferença da Fase (RPDDF) ... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The error caused by ionosphere on GNSS (Global Navigation Satellite System) is directly proportional to the density of electrons from ionosphere and inversely proportional to the frequency squared of the signal GNSS. As in the case of point positioning, results in relative positioning are affected by systematic effect from ionosphere, which is one of major error sources in the GNSS positioning. Although some errors caused by ionosphere are canceled in double difference, strong impacts may be caused by ionosphere on the relative positioning. In this positioning the main problem is the spatial variation in electron density that can occur due local time, seasonal variation, user location, solar cycle, geomagnetic activity, etc. Depending on the conditions of space weather, in which is controlled by the Sun, the geomagnetic activity can be changed inducing geomagnetic storms. In this research the effects from ionosphere has been evaluated in GNSS relative positioning using L1 carrier phase observations, at the three regions of the ionosphere: middle and high latitudes and equatorial region. In regions of middle and high latitudes have been analyzed the effects from ionosphere in irregularities periods, caused by geomagnetic storms. In the equatorial region, including Brazil, have been analyzed the effects from ionosphere according daily and seasonal variation. In the processing GNSS data has been used GPSeq software. This software processes the data in a recursive form and provides the Predicted Residual of Carrier Phase Double Difference (PRCPDD) ... (Complete abstract click electronic access below) / Doutor
18

Heterogeneous networking for beyond 3G system in a high-speed train environment : investigation of handover procedures in a high-speed train environment and adoption of a pattern classification neural-networks approach for handover management

Ong, Felicia Li Chin January 2016 (has links)
Based on the targets outlined by the EU Horizon 2020 (H2020) framework, it is expected that heterogeneous networking will play a crucial role in delivering seamless end-to-end ubiquitous Internet access for users. In due course, the current GSM-Railway (GSM-R) will be deemed unsustainable, as the demand for packet-oriented services continues to increase. Therefore, the opportunity to identify a plausible replacement system conducted in this research study is timely and appropriate. In this research study, a hybrid satellite and terrestrial network for enabling ubiquitous Internet access in a high-speed train environment is investigated. The study focuses on the mobility management aspect of the system, primarily related to the handover management. A proposed handover strategy, employing the RACE II MONET and ITU-T Q.65 design methodology, will be addressed. This includes identifying the functional model (FM) which is then mapped to the functional architecture (FUA), based on the Q.1711 IMT-2000 FM. In addition, the signalling protocols, information flows and message format based on the adopted design methodology will also be specified. The approach is then simulated in OPNET and the findings are then presented and discussed. The opportunity of exploring the prospect of employing neural networks (NN) for handover is also undertaken. This study focuses specifically on the use of pattern classification neural networks to aid in the handover process, which is then simulated in MATLAB. The simulation outcomes demonstrated the effectiveness and appropriateness of the NN algorithm and the competence of the algorithm in facilitating the handover process.
19

Crustal Deformation Model of the Southern Kurile Subduction Zone Inferred from Geodetic Observation Data / 測地観測データに基づく千島沈み込み帯南部の地殻変動モデル

Itoh, Yuji 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22256号 / 理博第4570号 / 新制||理||1656(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 西村 卓也, 教授 福田 洋一, 准教授 深畑 幸俊 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
20

Road Estimation Using GPS Traces and Real Time Kinematic Data

Ghanbarynamin, Samira 29 April 2022 (has links)
Advance Driver Assistance System (ADAS) are becoming the main issue in today’s automotive industry. The new generation of ADAS aims at focusing on more details and obtaining more accuracy. To achieve this objective, the research and development parts of the automobile industry intend to utilize Global Positioning System (GPS) by integrating it with other existing tools in ADAS. There are several driving assistance systems which are served by a digital map as a primary or a secondary sensor. The traditional techniques of digital map generation are expensive and time consuming and require extensive manual effort. Therefore, having frequently updated maps is an issue. Furthermore, the existing commercial digital maps are not highly accurate. This Master thesis presents several algorithms for automatically converting raw Universal Serial Bus (USB)-GPS and Real Time Kinematic (RTK) GPS traces into a routable road network. The traces are gathered by driving 20 times on a highway. This work begins by pruning raw GPS traces using four different algorithms. The first step tries to minimize the number of outliers. After the traces are smoothed, they tend to consolidate into smooth paths. So in order to merge all 20 trips together and estimate the road network a Trace Merging algorithm is applied. Finally, a Non-Uniform Rational B-Spline (NURBS) curve is implemented as an approximation curve to smooth the road shape and decrease the effect of noisy data further. Since the RTK-GPS receiver provides highly accurate data, the curve resulted from its GPS data is the most sufficient road shape. Therefore, it is used as a ground truth to compare the result of each pruning algorithm based on data from USB-GPS. Lastly, the results of this work are demonstrated and a quality evaluation is done for all methods.

Page generated in 0.0851 seconds