• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biogeochemical Defluoridation

Evans-Tokaryk, Kerry 09 June 2011 (has links)
Fluoride in drinking water can lead to a crippling disease called fluorosis. As there is no cure for fluorosis, prevention is the only means of controlling the disease and research into fluoride remediation is critical. This work begins by providing a new approach to assessing fluoride remediation strategies using a combination of groundwater chemistry, saturation indices, and multivariate statistics based on the results of a large groundwater survey performed in a fluoride-contaminated region of India. From the Indian groundwater study, it was noted that one technique recommended for defluoridation involved using hydrous ferric oxide (HFO) as a solid phase sorbent for fluoride. This prompted investigation of bacteriogenic iron oxides (BIOS), a biogenic form of HFO, as a means of approaching bioremediation of fluoride. Batch sorption experiments at ionic strengths ranging from 0.001 to 0.1 M KNO3 and time course kinetic studies with BIOS and synthetic HFO were conducted to ascertain total sorption capacities (ST), sorption constants (Ks), and orders of reaction (n), as well as forward (kf) and reverse (kr) rate constants. Microcosm titration experiments were also conducted with BIOS and HFO in natural spring water from a groundwater discharge zone to evaluate fluoride sorption under field conditions. This thesis contributes significant, new information regarding the interaction between fluoride and BIOS, advancing knowledge of fluoride remediation and covering new ground in the uncharted field of fluoride bioremediation.
2

Biogeochemical Defluoridation

Evans-Tokaryk, Kerry 09 June 2011 (has links)
Fluoride in drinking water can lead to a crippling disease called fluorosis. As there is no cure for fluorosis, prevention is the only means of controlling the disease and research into fluoride remediation is critical. This work begins by providing a new approach to assessing fluoride remediation strategies using a combination of groundwater chemistry, saturation indices, and multivariate statistics based on the results of a large groundwater survey performed in a fluoride-contaminated region of India. From the Indian groundwater study, it was noted that one technique recommended for defluoridation involved using hydrous ferric oxide (HFO) as a solid phase sorbent for fluoride. This prompted investigation of bacteriogenic iron oxides (BIOS), a biogenic form of HFO, as a means of approaching bioremediation of fluoride. Batch sorption experiments at ionic strengths ranging from 0.001 to 0.1 M KNO3 and time course kinetic studies with BIOS and synthetic HFO were conducted to ascertain total sorption capacities (ST), sorption constants (Ks), and orders of reaction (n), as well as forward (kf) and reverse (kr) rate constants. Microcosm titration experiments were also conducted with BIOS and HFO in natural spring water from a groundwater discharge zone to evaluate fluoride sorption under field conditions. This thesis contributes significant, new information regarding the interaction between fluoride and BIOS, advancing knowledge of fluoride remediation and covering new ground in the uncharted field of fluoride bioremediation.

Page generated in 0.0984 seconds