• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Savoniova větrná turbína / Savonius rotor

Záviška, Radek January 2015 (has links)
The diploma thesis is focused on designer works of Savounius rotor for Raječko location. Finish of this design work is equipment, which will be used in this location as decentralized source of electrical energy. In thesis are written manufacturing processes as so as the process of design part including the calculation part, which is focused on characteristic quantity of Savonius rotor. Thesis is finished by econominal assessment of project.
2

Evaluation of Self-Starting Vertical Axis Wind Turbines for Stand-Alone Applications

Kirke, Brian Kinloch, n/a January 1998 (has links)
There is an urgent need for economical, clean, sustainable energy supplies, not only in densely populated areas where electricity grids are appropriate, but also in rural areas where stand-alone power supply systems are often more suitable. Although electrical power supply is very versatile and convenient, it introduces unnecessary complexity for some off-grid applications where direct mechanical shaft power can conveniently be provided by a wind turbine. Wind energy is one of the more promising renewable energy sources. Most wind turbines are of the horizontal axis type, but vertical axis wind turbines or VAWTs have some advantages for direct mechanical drive applications. They need no tail or yaw mechanism to orient them into the wind and power is easily transmitted via a vertical shaft to a load at ground level. Blades may be of uniform section and untwisted, making them relatively easy to fabricate or extrude, unlike the blades of horizontal axis wind turbines (HAWTs) which should be twisted and tapered for optimum performance. Savonius rotor VAWTs are simple and may have a place where the power requirement is only a few Watts, but they are inefficient and uneconomical for applications with larger power requirements. VAWTs based on the Darrieus rotor principle are potentially more efficient and more economical, but those with fixed pitch blades have hitherto been regarded as unsuitable for stand-alone use due to their lack of starting torque and low speed torque. This starting torque problem can be overcome by using variable pitch blades, but most existing variable pitch VAWTs, variously known as giromills or cycloturbines, need wind direction sensors, microprocessors and servomotors to control the blade pitch, making them impracticable for stand-alone, non-electrical applications. A simpler but less well known concept is passive or self-acting variable pitch in which the blades are free to pitch under the combined action of aerodynamic and inertial forces in such a way that a favourable blade angle of attack is maintained without the complexity of conventional variable pitch systems. Several fonns of self-acting variable pitch VAWTs or SAPVAWTs have been described in the literature, several patents exist for variants on the concept, and at least two companies world-wide have attempted to commercialise their designs. However the aerodynamic behaviour of these devices has been little understood and most designs appear to have been based on nothing more than a qualitative appreciation of the potential advantages of the concept. This thesis assesses the potential of both fixed and passive variable pitch vertical axis wind turbines to provide economical stand-alone power for direct mechanical drive applications. It is shown that the starting torque and low speed torque problems of VAWTs can be overcome either by passive variable pitch or by a combination of suitable blade aerofoil sections, either rigid or flexible, and transmissions which unload the rotor at low speeds so that high starting torque is not necessary. The work done for this thesis is made up of a sequence of stages, each following logically from the previous one: 1. Several tasks have been identified which could be performed effectively by a self-starting vertical axis wind turbine using direct mechanical drive. These include, a. pumping water, b. purifying and/or desalinating water by reverse osmosis, c. heating and cooling using vapour compression heat pumps, d. mixing and aerating water bodies and e. heating water by fluid turbulence. Thus it is apparent that such a system has the potential to make a useful contribution to society. 2. A literature survey of existing VAWT designs has been carried out to assess whether any are suitable for these applications. 3. As no suitable existing design was identified, an improved form of SAPVAWT has been developed and patented. 4. To optimise the performance of the improved SAPVAWT, a mathematical model has been developed in collaboration with Mr Leo Lazauskas of the University of Adelaide (see Kirke and Lazauskas, 1991, Lazauskas and Kirke, 1992). As far as the author of the present thesis is aware, this is the only existing mathematical model able to predict the performance of this particular type of SAPVAWT, and one of only two worldwide which model SAPVAWTs. 5. In order to use the mathematical model to predict the performance of a given SAPVAWT, it is necessary to have lift, drag and moment data for the aerofoil profile to be used, over a wide range of incidence and Reynolds numbers. A literature search has revealed large gaps in the existing data. 6. Wind tunnel testing has been carried out to assess the effect of camber on the performance of one set of NACA sections at low Reynolds number, and performance figures for other sections have been estimated by interpolation from existing data. 7. Using the assembled aerofoil data, both experimental and estimated, the mathematical model has been used to predict the performance of both fixed and variable pitch VAWTs. It has been found to predict correctly the performance of known fixed pitch VAWTs and has then been used to predict the performance of fixed pitch VAWTs with cambered blades using newly developed profiles that exhibit superior characteristics at low Reynolds numbers. Results indicate that fixed pitch VAWTs using these blade sections should self-start reliably. 8. To validate the mathematical model predictions for self-acting variable pitch, a two metre diameter physical model has been built and tested in a wind tunnel, and acceptable agreement has been obtained between predicted and measured performance. 9. To demonstrate the performance of a SAP VA WT under field conditions, a six metre diameter turbine has been designed, fabricated, erected and tested. 10. Because a prime mover such as a wind turbine is of no use unless it drives a toad, particular attention has been paid to the behaviour of complete systems, including the wind turbine, the transmission and the load. It is concluded that VAWTs with the improved self-starting and low speed torque characteristics described in this thesis have considerable potential in stand-alone, direct mechanical drive applications.
3

Estudo numérico e experimental do escoamento sobre um rotor eólico Savonius em canal aerodinâmico com alta razão de bloqueio

Akwa, João Vicente January 2014 (has links)
Neste trabalho, são inicialmente discutidas as dificuldades referentes à obtenção de resultados numéricos para a operação de uma turbina Savonius independentes do grau de discretização, tamanho de domínio de cálculo e de máximo tempo físico simulado. Também são relatadas as divergências entre as metodologias numéricas e experimentais adotadas por diversos autores, que dificultam análises e comparações dos resultados obtidos por meio dessas metodologias com os resultados próprios obtidos. Devido a esses fatos, no presente trabalho, uma série de procedimentos experimentais e numéricos são realizados para efetuar análises do escoamento sobre uma turbina eólica Savonius. Nos experimentos em canal aerodinâmico, perfis de velocidade e parâmetros da turbulência são obtidos pela técnica de anemometria de fio quente. Medições com o uso de tubos de Pitot e manômetros eletrônicos são efetuadas para avaliar a variação da pressão e os perfis de velocidade média em posições selecionadas. Além de dados para análise, informações úteis para uso como condições de contorno nas simulações numéricas também são obtidas. Os fenômenos são reproduzidos através de simulações numéricas pelo Método de Volumes Finitos, que solucionam as equações da continuidade, de Navier-Stokes com médias de Reynolds e do modelo de turbulência k-ω SST. Análises experimentais e numéricas considerando o escoamento sobre um cilindro, que mantém semelhanças com o escoamento sobre o rotor, também são realizadas. Simulações numéricas do escoamento sobre o cilindro são efetuadas, fornecendo resultados representativos do escoamento real, quando geometrias tridimensionais são aplicadas na modelagem numérica. Nas simulações do escoamento sobre o rotor Savonius em condição estática, resultados representativos do escoamento real são obtidos com o uso de uma modelagem que leva em consideração a rugosidade das pás do rotor, estacionado na posição angular de 90°. Para posições angulares menores, não se obteve uma boa concordância entre os resultados experimentais e numéricos. A realização deste trabalho fornece informações úteis para a análise do fenômeno e tem potencial para contribuir com futuros trabalhos desse tema. / This research work initially presents a discussion about the difficulties related to obtaining numerical results for the operation of a turbine Savonius independent of the degree of discretization, calculation domain size and maximum physical time of the simulation. The differences between the numerical and experimental methodologies adopted by various authors difficult the analysis and comparisons of the results obtained through these methods with the results obtained by the methodology. Due to these facts, in this research work, a series of experimental and numerical procedures are performed to conduct analyzes of flow over a Savonius wind turbine. In the experiments on aerodynamic channel, velocity and turbulence profiles parameters are obtained by the technique of hot wire anemometry. Measurements using Pitot tubes and electronic manometers are made to evaluate the variation of pressure and mean velocity profiles at selected positions. In addition to data analysis, useful information for use as boundary conditions in the numerical simulations are also obtained. The phenomena are reproduced through numerical simulations by Finite Volume Method, that solve the equations of continuity, Reynolds-averaged Navier–Stokes equations and the equation of the turbulence model k-ω SST. Experimental and numerical analyzes considering the flow over a cylinder, which holds similarities with the flow over the rotor, are also performed. Numerical simulations of the flow over the cylinder are made, providing results representative of the actual flow when three-dimensional geometries are applied in numerical modeling. In flow simulations over the Savonius rotor in static condition, at 90°, representative results of the actual flow are obtained using a model that takes into account the roughness of the rotor blades. For smaller angular positions a good agreement between experimental and numerical results was not obtained. This work provides useful information for the analysis of the phenomenon and has the potential to contribute to future work on this theme.
4

Estudo numérico e experimental do escoamento sobre um rotor eólico Savonius em canal aerodinâmico com alta razão de bloqueio

Akwa, João Vicente January 2014 (has links)
Neste trabalho, são inicialmente discutidas as dificuldades referentes à obtenção de resultados numéricos para a operação de uma turbina Savonius independentes do grau de discretização, tamanho de domínio de cálculo e de máximo tempo físico simulado. Também são relatadas as divergências entre as metodologias numéricas e experimentais adotadas por diversos autores, que dificultam análises e comparações dos resultados obtidos por meio dessas metodologias com os resultados próprios obtidos. Devido a esses fatos, no presente trabalho, uma série de procedimentos experimentais e numéricos são realizados para efetuar análises do escoamento sobre uma turbina eólica Savonius. Nos experimentos em canal aerodinâmico, perfis de velocidade e parâmetros da turbulência são obtidos pela técnica de anemometria de fio quente. Medições com o uso de tubos de Pitot e manômetros eletrônicos são efetuadas para avaliar a variação da pressão e os perfis de velocidade média em posições selecionadas. Além de dados para análise, informações úteis para uso como condições de contorno nas simulações numéricas também são obtidas. Os fenômenos são reproduzidos através de simulações numéricas pelo Método de Volumes Finitos, que solucionam as equações da continuidade, de Navier-Stokes com médias de Reynolds e do modelo de turbulência k-ω SST. Análises experimentais e numéricas considerando o escoamento sobre um cilindro, que mantém semelhanças com o escoamento sobre o rotor, também são realizadas. Simulações numéricas do escoamento sobre o cilindro são efetuadas, fornecendo resultados representativos do escoamento real, quando geometrias tridimensionais são aplicadas na modelagem numérica. Nas simulações do escoamento sobre o rotor Savonius em condição estática, resultados representativos do escoamento real são obtidos com o uso de uma modelagem que leva em consideração a rugosidade das pás do rotor, estacionado na posição angular de 90°. Para posições angulares menores, não se obteve uma boa concordância entre os resultados experimentais e numéricos. A realização deste trabalho fornece informações úteis para a análise do fenômeno e tem potencial para contribuir com futuros trabalhos desse tema. / This research work initially presents a discussion about the difficulties related to obtaining numerical results for the operation of a turbine Savonius independent of the degree of discretization, calculation domain size and maximum physical time of the simulation. The differences between the numerical and experimental methodologies adopted by various authors difficult the analysis and comparisons of the results obtained through these methods with the results obtained by the methodology. Due to these facts, in this research work, a series of experimental and numerical procedures are performed to conduct analyzes of flow over a Savonius wind turbine. In the experiments on aerodynamic channel, velocity and turbulence profiles parameters are obtained by the technique of hot wire anemometry. Measurements using Pitot tubes and electronic manometers are made to evaluate the variation of pressure and mean velocity profiles at selected positions. In addition to data analysis, useful information for use as boundary conditions in the numerical simulations are also obtained. The phenomena are reproduced through numerical simulations by Finite Volume Method, that solve the equations of continuity, Reynolds-averaged Navier–Stokes equations and the equation of the turbulence model k-ω SST. Experimental and numerical analyzes considering the flow over a cylinder, which holds similarities with the flow over the rotor, are also performed. Numerical simulations of the flow over the cylinder are made, providing results representative of the actual flow when three-dimensional geometries are applied in numerical modeling. In flow simulations over the Savonius rotor in static condition, at 90°, representative results of the actual flow are obtained using a model that takes into account the roughness of the rotor blades. For smaller angular positions a good agreement between experimental and numerical results was not obtained. This work provides useful information for the analysis of the phenomenon and has the potential to contribute to future work on this theme.
5

Estudo numérico e experimental do escoamento sobre um rotor eólico Savonius em canal aerodinâmico com alta razão de bloqueio

Akwa, João Vicente January 2014 (has links)
Neste trabalho, são inicialmente discutidas as dificuldades referentes à obtenção de resultados numéricos para a operação de uma turbina Savonius independentes do grau de discretização, tamanho de domínio de cálculo e de máximo tempo físico simulado. Também são relatadas as divergências entre as metodologias numéricas e experimentais adotadas por diversos autores, que dificultam análises e comparações dos resultados obtidos por meio dessas metodologias com os resultados próprios obtidos. Devido a esses fatos, no presente trabalho, uma série de procedimentos experimentais e numéricos são realizados para efetuar análises do escoamento sobre uma turbina eólica Savonius. Nos experimentos em canal aerodinâmico, perfis de velocidade e parâmetros da turbulência são obtidos pela técnica de anemometria de fio quente. Medições com o uso de tubos de Pitot e manômetros eletrônicos são efetuadas para avaliar a variação da pressão e os perfis de velocidade média em posições selecionadas. Além de dados para análise, informações úteis para uso como condições de contorno nas simulações numéricas também são obtidas. Os fenômenos são reproduzidos através de simulações numéricas pelo Método de Volumes Finitos, que solucionam as equações da continuidade, de Navier-Stokes com médias de Reynolds e do modelo de turbulência k-ω SST. Análises experimentais e numéricas considerando o escoamento sobre um cilindro, que mantém semelhanças com o escoamento sobre o rotor, também são realizadas. Simulações numéricas do escoamento sobre o cilindro são efetuadas, fornecendo resultados representativos do escoamento real, quando geometrias tridimensionais são aplicadas na modelagem numérica. Nas simulações do escoamento sobre o rotor Savonius em condição estática, resultados representativos do escoamento real são obtidos com o uso de uma modelagem que leva em consideração a rugosidade das pás do rotor, estacionado na posição angular de 90°. Para posições angulares menores, não se obteve uma boa concordância entre os resultados experimentais e numéricos. A realização deste trabalho fornece informações úteis para a análise do fenômeno e tem potencial para contribuir com futuros trabalhos desse tema. / This research work initially presents a discussion about the difficulties related to obtaining numerical results for the operation of a turbine Savonius independent of the degree of discretization, calculation domain size and maximum physical time of the simulation. The differences between the numerical and experimental methodologies adopted by various authors difficult the analysis and comparisons of the results obtained through these methods with the results obtained by the methodology. Due to these facts, in this research work, a series of experimental and numerical procedures are performed to conduct analyzes of flow over a Savonius wind turbine. In the experiments on aerodynamic channel, velocity and turbulence profiles parameters are obtained by the technique of hot wire anemometry. Measurements using Pitot tubes and electronic manometers are made to evaluate the variation of pressure and mean velocity profiles at selected positions. In addition to data analysis, useful information for use as boundary conditions in the numerical simulations are also obtained. The phenomena are reproduced through numerical simulations by Finite Volume Method, that solve the equations of continuity, Reynolds-averaged Navier–Stokes equations and the equation of the turbulence model k-ω SST. Experimental and numerical analyzes considering the flow over a cylinder, which holds similarities with the flow over the rotor, are also performed. Numerical simulations of the flow over the cylinder are made, providing results representative of the actual flow when three-dimensional geometries are applied in numerical modeling. In flow simulations over the Savonius rotor in static condition, at 90°, representative results of the actual flow are obtained using a model that takes into account the roughness of the rotor blades. For smaller angular positions a good agreement between experimental and numerical results was not obtained. This work provides useful information for the analysis of the phenomenon and has the potential to contribute to future work on this theme.
6

Análise do desempenho de uma turbina savonius helicoidal com torção de 180º empregando simulação numérica

Oliveira, Cássia Pederiva de January 2014 (has links)
Este trabalho apresenta a simulação numérica do escoamento turbulento em torno de uma turbina eólica de eixo vertical de pequeno porte, Savonius tipo helicoidal com torção de 180° nas pás. Com o intuito de avaliar a metodologia computacional empregada os resultados numéricos obtidos são comparados com os resultados experimental e numérico contidos no estado da arte. Também, compara-se o coeficiente de toque da turbina Savonius helicoidal com a turbina Savonius convencional. As simulações numéricas são baseadas no Método de Volumes Finitos, e para tal emprega-se o programa Fluent /Ansys versão 13.0 que resolve as equações da continuidade e as equações de Navier-Stokes com médias de Reynolds, juntamente com o modelo de turbulência . As simulações são desenvolvidas empregando diferentes malhas computacionais em estudos transientes, tridimensionais, com a turbina estacionária. A avaliação da qualidade da malha é realizada através do método de Índice de Convergência de Malha (GCI) o qual analisa o quão longe os resultados estão da solução assintótica para a malha utilizada. Após a análise da qualidade de malha, realizam-se simulações com a turbina em rotação as quais fazem uso da malha contendo uma região móvel possibilitando a imposição de uma velocidade angular ao rotor. O coeficiente de torque é obtido nas simulações e a partir dele calcula-se o coeficiente de potência. Além da análise do desempenho do rotor realiza-se uma análise qualitativa das características do escoamento sobre a turbina. A turbina Savonius helicoidal apresenta um valor de coeficiente de potência de 0,175 para a razão de velocidade de ponta de 0,58 considerando correção do efeito de bloqueio. Os resultados obtidos apresentam boa concordância com os resultados publicados por outros autores. / This dissertation presents the numerical simulation of the turbulent flow around of a small sized vertical axis wind turbine, consisting in a helical Savonius type with a 180° degree of blade twist. In order to evaluate the used methodology the obtained results are compared with the state of the art numerical and experimental data. It will be also presented the comparison between the torque coefficient of the conventional Savonius turbine and the helical Savonius turbine. The numerical simulations are based on the Finite Volume Method (FVM), using the commercial code Fluent/ANSYS version 13.0, which solves the continuity and Navier-Stokes through the Reynolds time-averaged methodology, including the turbulence model. The simulations are developed using different computational meshes for transient and three-dimensional studies with the stationary turbine. The evaluating the quality of the mesh is performed by of Grid Convergence Index (GCI) method which analyzes how far the results are the asymptotic solution to the mesh used. After the evaluation of the mesh quality, it was simulated a case considering the rotor motion using the moving mesh configuration, allowing the imposition of an angular velocity to the turbine. In the post-processing stage, it is possible to obtain the torque coefficient on the rotor shaft, allowing the calculation of the power coefficient for the turbine. In addition to the performance analysis, it is also made a qualitative analysis of the flow characteristics over the turbine rotor and in both cases presenting a good correspondence with the results in the literature. The helical Savonius turbine presents a value of power coefficient of 0.175 to a tip speed ratio of 0.58 whereas blocking effect correction.
7

Análise do desempenho de uma turbina savonius helicoidal com torção de 180º empregando simulação numérica

Oliveira, Cássia Pederiva de January 2014 (has links)
Este trabalho apresenta a simulação numérica do escoamento turbulento em torno de uma turbina eólica de eixo vertical de pequeno porte, Savonius tipo helicoidal com torção de 180° nas pás. Com o intuito de avaliar a metodologia computacional empregada os resultados numéricos obtidos são comparados com os resultados experimental e numérico contidos no estado da arte. Também, compara-se o coeficiente de toque da turbina Savonius helicoidal com a turbina Savonius convencional. As simulações numéricas são baseadas no Método de Volumes Finitos, e para tal emprega-se o programa Fluent /Ansys versão 13.0 que resolve as equações da continuidade e as equações de Navier-Stokes com médias de Reynolds, juntamente com o modelo de turbulência . As simulações são desenvolvidas empregando diferentes malhas computacionais em estudos transientes, tridimensionais, com a turbina estacionária. A avaliação da qualidade da malha é realizada através do método de Índice de Convergência de Malha (GCI) o qual analisa o quão longe os resultados estão da solução assintótica para a malha utilizada. Após a análise da qualidade de malha, realizam-se simulações com a turbina em rotação as quais fazem uso da malha contendo uma região móvel possibilitando a imposição de uma velocidade angular ao rotor. O coeficiente de torque é obtido nas simulações e a partir dele calcula-se o coeficiente de potência. Além da análise do desempenho do rotor realiza-se uma análise qualitativa das características do escoamento sobre a turbina. A turbina Savonius helicoidal apresenta um valor de coeficiente de potência de 0,175 para a razão de velocidade de ponta de 0,58 considerando correção do efeito de bloqueio. Os resultados obtidos apresentam boa concordância com os resultados publicados por outros autores. / This dissertation presents the numerical simulation of the turbulent flow around of a small sized vertical axis wind turbine, consisting in a helical Savonius type with a 180° degree of blade twist. In order to evaluate the used methodology the obtained results are compared with the state of the art numerical and experimental data. It will be also presented the comparison between the torque coefficient of the conventional Savonius turbine and the helical Savonius turbine. The numerical simulations are based on the Finite Volume Method (FVM), using the commercial code Fluent/ANSYS version 13.0, which solves the continuity and Navier-Stokes through the Reynolds time-averaged methodology, including the turbulence model. The simulations are developed using different computational meshes for transient and three-dimensional studies with the stationary turbine. The evaluating the quality of the mesh is performed by of Grid Convergence Index (GCI) method which analyzes how far the results are the asymptotic solution to the mesh used. After the evaluation of the mesh quality, it was simulated a case considering the rotor motion using the moving mesh configuration, allowing the imposition of an angular velocity to the turbine. In the post-processing stage, it is possible to obtain the torque coefficient on the rotor shaft, allowing the calculation of the power coefficient for the turbine. In addition to the performance analysis, it is also made a qualitative analysis of the flow characteristics over the turbine rotor and in both cases presenting a good correspondence with the results in the literature. The helical Savonius turbine presents a value of power coefficient of 0.175 to a tip speed ratio of 0.58 whereas blocking effect correction.
8

Análise do desempenho de uma turbina savonius helicoidal com torção de 180º empregando simulação numérica

Oliveira, Cássia Pederiva de January 2014 (has links)
Este trabalho apresenta a simulação numérica do escoamento turbulento em torno de uma turbina eólica de eixo vertical de pequeno porte, Savonius tipo helicoidal com torção de 180° nas pás. Com o intuito de avaliar a metodologia computacional empregada os resultados numéricos obtidos são comparados com os resultados experimental e numérico contidos no estado da arte. Também, compara-se o coeficiente de toque da turbina Savonius helicoidal com a turbina Savonius convencional. As simulações numéricas são baseadas no Método de Volumes Finitos, e para tal emprega-se o programa Fluent /Ansys versão 13.0 que resolve as equações da continuidade e as equações de Navier-Stokes com médias de Reynolds, juntamente com o modelo de turbulência . As simulações são desenvolvidas empregando diferentes malhas computacionais em estudos transientes, tridimensionais, com a turbina estacionária. A avaliação da qualidade da malha é realizada através do método de Índice de Convergência de Malha (GCI) o qual analisa o quão longe os resultados estão da solução assintótica para a malha utilizada. Após a análise da qualidade de malha, realizam-se simulações com a turbina em rotação as quais fazem uso da malha contendo uma região móvel possibilitando a imposição de uma velocidade angular ao rotor. O coeficiente de torque é obtido nas simulações e a partir dele calcula-se o coeficiente de potência. Além da análise do desempenho do rotor realiza-se uma análise qualitativa das características do escoamento sobre a turbina. A turbina Savonius helicoidal apresenta um valor de coeficiente de potência de 0,175 para a razão de velocidade de ponta de 0,58 considerando correção do efeito de bloqueio. Os resultados obtidos apresentam boa concordância com os resultados publicados por outros autores. / This dissertation presents the numerical simulation of the turbulent flow around of a small sized vertical axis wind turbine, consisting in a helical Savonius type with a 180° degree of blade twist. In order to evaluate the used methodology the obtained results are compared with the state of the art numerical and experimental data. It will be also presented the comparison between the torque coefficient of the conventional Savonius turbine and the helical Savonius turbine. The numerical simulations are based on the Finite Volume Method (FVM), using the commercial code Fluent/ANSYS version 13.0, which solves the continuity and Navier-Stokes through the Reynolds time-averaged methodology, including the turbulence model. The simulations are developed using different computational meshes for transient and three-dimensional studies with the stationary turbine. The evaluating the quality of the mesh is performed by of Grid Convergence Index (GCI) method which analyzes how far the results are the asymptotic solution to the mesh used. After the evaluation of the mesh quality, it was simulated a case considering the rotor motion using the moving mesh configuration, allowing the imposition of an angular velocity to the turbine. In the post-processing stage, it is possible to obtain the torque coefficient on the rotor shaft, allowing the calculation of the power coefficient for the turbine. In addition to the performance analysis, it is also made a qualitative analysis of the flow characteristics over the turbine rotor and in both cases presenting a good correspondence with the results in the literature. The helical Savonius turbine presents a value of power coefficient of 0.175 to a tip speed ratio of 0.58 whereas blocking effect correction.
9

Větrná elektrárna se Savoniovým rotorem pro výrobu elektrické energie / Wind power station with Savonius rotor for production of electric power

Klečka, Jiří January 2009 (has links)
Using of wind energy belongs to one of the fastest developing segments in the power production from renewable resources, which also relates to new studies and development of different types of power stations and brings new ideas to small wind sources spheres too. Savonius rotor is included in these spheres as well. This thesis deals with a complete design, realization and trial measurement of single-step Savonius rotor model. Introduction part treats of basic division and rotor utilization. Design part includes the design as well rotor graphical documentation. In the following part there is data evaluation, which leads to comparison with theoretical calculations. The final part includes an examination of possible utilization of Savonius rotor for generation of electricity.
10

Two-dimensional Study of Blade Profiles for a Savonius Wind Turbine

Sundberg, Johanna, Lundberg, Martina, Solhed, Julia, Manousidou, Aikaterini January 2020 (has links)
A Savonius wind turbine is a self-starting vertical axis rotor. It can be designed to be compact in size and also produces less noise which makes it suitable to integrate into urban spaces such as rooftops and sign-poles. These characteristics make it interesting from a sustainability point of view, especially when aiming to increase the decentralization of electricity production. This thesis aimed to investigate the aerodynamic performance of different two-bladed Savonius profiles by varying the blade arc angle and the overlap ratio. For evaluation, the dimensionless power coefficient and torque coefficient were investigated over different tip speed ratios. The study was conducted numerically with 2D simulations in Ansys Fluent. The partial differential equations describing the characteristics of the flow, including the flow turbulence effects, were solved with the Reynolds-average Navier Stokes in combination with the k-omega SST model. A validation was performed by comparing data from simulated and experimental tests of a semi-circular profile and a Benesh profile. The investigation of the blade arc angle and overlap ratio was performed on a Modified Bach profile. The profile with a blade arc angle of 130 degrees and an overlap ratio of 0.56 generated a maximal power coefficient of 0.267 at a tip speed ratio of 0.9. This blade configuration generated the best performance of all conducted simulations in this project. However, this project contained uncertainties since simulations can never be an exact description of reality. The project was also limited by the computational power available. Nevertheless, according to the conducted simulations, it was observed that a higher blade arc angle and a larger overlap ratio seem to generate higher efficiency. / En Savonius vindturbin är en självstartande vertikalaxlad rotor som kan utformas i en kompakt design samtidigt som den producerar mindre oljud än horisontalaxlade vindkraftverk. Dagens hållbarhetssträvan i kombination med Savonius turbinens karakteristiska egenskaper gör den till ett potentiellt starkt vertyg för vindenergi. Då den kan placeras på exempelvis hustak eller skyltstolpar, utan att störa närliggande omgivning, finns det många möjliga sätt att implementera och integrera den i samhällets infrastruktur. Målet med detta projekt var att undersöka den aerodynamiska prestationen för Savoniusturbiner med två blad genom att variera bladvinkeln och överlappningsförhållandet. För att jämföra de olika profilerna användes den dimensionslösa effektkoefficienten och momentkoefficienten. Dessa koefficienter beräknades i förhållande till löptalet. Studien utfördes numeriskt med 2D-simuleringar i Ansys Fluent. De partiella differentialekvationerna som beskriver flödets egenskaper, inkluderat turbulenseffekterna, löstes med Reynolds-average Navier Stokes i kombination med k-ω SST modellen. En validering utfördes genom att jämföra data med simulerade och experimentella värden av en Semi-circular profil och en Benesh profil. Studien av bladvinkel och överlappningsförhållandet utgick från en Modified Bach profil. Den mest effektiva profilen hade en bladvinkel av 130 grader och ett överlappsförhållande på 0,56. Den genererade en maximal effektkoefficient av 0,267 vid löptal 0,9. Projektet innehöll en del osäkerheter då simuleringar aldrig kan beskriva verkligheten till fullo. Den tillgängliga beräkningskapaciteten begränsade även projektet ytterligare. Trots vissa begränsningar, visar ändå utförda simuleringar att ökad bladvinkel och ökat överlappningsförhållande genererar högre effekt. / <p>This project was conducted within Stand up for wind and Stand up for energy.</p>

Page generated in 0.1242 seconds