• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Drivers and Mechanisms of Peat Collapse in Coastal Wetlands

Wilson, Benjamin J 23 March 2018 (has links)
Coastal wetlands store immense amounts of carbon (C) in vegetation and sediments, but this store of C is under threat from climate change. Accelerated sea level rise (SLR), which leads to saltwater intrusion, and more frequent periods of droughts will both impact biogeochemical cycling in wetlands. Coastal peat marshes are especially susceptible to saltwater intrusion and changes in water depth, but little is known about how exposure to salinity affects organic matter accumulation and peat stability. I investigated freshwater and brackish marsh responses to elevated salinity, greater inundation, drought, and increased nutrient loading. Elevated salinity pulses in a brackish marsh increased CO2 release from the marsh but only during dry-down. Elevated salinity increased root mortality at both a freshwater and brackish marsh. Under continuously elevated salinity in mesocosms, net ecosystem productivity (NEP) was unaffected by elevated salinity in a freshwater marsh exposed to brackish conditions (0 à 8 ppt), but NEP significantly increased with P enrichment. Elevated salinity led to a higher turnover of live to dead roots, resulting in a ~2-cm loss in soil elevation within 1 year of exposure to elevated salinity. When exposing a brackish marsh to more saline conditions (10 à 20 ppt), NEP, aboveground biomass production, and root growth all significantly decreased with elevated salinity, shifting the marsh from a net C sink to a net C source to the atmosphere. Elevated salinity (10 à 20 ppt) did not increase soil elevation loss, which was already occurring under brackish conditions, but when coupled with a drought event, elevation loss doubled. My findings suggest these hypotheses for the drivers and mechanisms of peat collapse. When freshwater marshes are first exposed to elevated salinity, soil structure and integrity are negatively affected through loss of live roots within the soil profile, leaving the peat vulnerable to collapse even though aboveground productivity and NEP may be unaffected. Subsequent dry-down events where water falls below the soil surface further accelerate peat collapse. Although saltwater intrusion into freshwater wetlands may initially stimulate primary productivity through a P subsidy, the impact of elevated salinity on root and soil structure has a greater deleterious effect and may ultimately be the factors that lead to the collapse of these marshes.
2

Seed Dispersal and Reproduction Patterns Among Everglades Plants

Mossman, Ronald E. 10 November 2009 (has links)
In this study three aspects of sexual reproduction in Everglades plants were examined to more clearly understand seed dispersal and the allocation of resources to sexual reproduction— spatial dispersal process, temporal dispersal of seeds (seedbank), and germination patterns in the dominant species, sawgrass (Cladium jamaicense). Community assembly rules for fruit dispersal were deduced by analysis of functional traits associated with this process. Seedbank ecology was investigated by monitoring emergence of germinants from sawgrass soil samples held under varying water depths to determine the fate of dispersed seeds. Fine-scale study of sawgrass fruits yielded information on contributions to variation in sexually produced propagules in this species, which primarily reproduces vegetatively. It was hypothesized that Everglades plants possess a set of functional traits that enhance diaspore dispersal. To test this, 14 traits were evaluated among 51 species by factor analysis. The factorial plot of this analysis generated groups of related traits, with four suites of traits forming dispersal syndromes. Hydrochory traits were categorized by buoyancy and appendages enhancing buoyancy. Anemochory traits were categorized by diaspore size and appendages enhancing air movement. Epizoochory traits were categorized by diaspore size, buoyancy, and appendages allowing for attachment. Endozoochory traits were categorized by diaspore size, buoyancy, and appendages aiding diaspore presentation. These patterns/trends of functional trait organization also represent dispersal community assembly rules. Seeds dispersed by hydrochory were hypothesized to be caught most often in the edge of the north side of sawgrass patches. Patterns of germination and dispersal mode of all hydrochorous macrophytes with propagules in the seedbank were elucidated by germination analysis from 90 soil samples collected from 10 sawgrass patches. Mean site seed density was 486 seeds/m2 from 13 species. Most seeds collected at the north side of patches and significantly in the outer one meter of the patch edge (p = 0.013). Sawgrass seed germination was hypothesized to vary by site, among individual plants, and within different locations of a plant’s infructescence. An analysis of sawgrass fruits with nested ANOVAs found that collection site and interaction of site x individual plant significantly affect germination ability, seed viability, and fruit size (p < 0.050). Fruit location within a plant’s infructescence did not significantly affect germination. As for allocation of resources to sexual reproduction, only 17.9% of sawgrass seeds germinated and only 4.8% of ungerminated seeds with fleshy endosperm were presumed viable, but dormant. Collectively, only 22% of all sawgrass seeds produced were viable.

Page generated in 0.0252 seconds