• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 11
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unstart Phenomenology of a Dual-Mode Scramjet Subject to Time-Varying Fuel Input

Riley, Logan Patrick 03 July 2019 (has links)
No description available.
2

Understanding the Flow Physics of Shock Boundary-Layer Interactions Using CFD and Numerical Analyses

Friedlander, David J. 10 October 2013 (has links)
No description available.
3

Modeling Particle Drag in Accelerating Flows with Implications for SBLI in PIV - A Numerical Analysis

Kalagotla, Dilip 24 July 2018 (has links)
No description available.
4

Preliminary Design of a High-Enthalpy Hypersonic Wind Tunnel Facility and Analysis of Flow Interactions in a High-Speed Missile Configuration

Joshua Craig Ownbey (10721112) 02 August 2021 (has links)
An approach for designing a high-enthalpy wind tunnel driven by exothermic chemical reactions was developed. Nozzle contours were designed using CONTUR, a program implementing the method of characteristics, to design nozzle contours at various flow conditions. A reacting mixture including nitrous oxide has been identified as the best candidate for providing clean air at high temperatures. The nitrous oxide has a few performance factors that were considered, specifically the combustion of the gas. Initial CFD simulations were performed on the nozzle and test region to validate flow characteristics and possible issues. Initial results show a fairly uniform exit velocity and ability to perform testing. In a second phase of the work, two generic, high-speed missile configurations were explored using numerical simulation. The mean flow was computed on both geometries at 0 and 45 roll and 0, 1, and 10 angle of attack. The computations identified complex flow structures, including three-dimensional shock/boundary-layer interactions, that varied considerably with angle of attack.
5

Amplification of Streamwise Vortices Across a Separated Region at Mach 6

Lauren Nicole Wagner (12310118) 01 June 2022 (has links)
A series of experiments were carried out in Purdue University’s Boeing/AFOSR Mach6 Quiet Tunnel, to understand the amplification of streamwise vortices across a separated region in a quiet flow regime. Streamwise vortices were induced on the upstream end of an axisymmetric model consisting of a 7-degree half-angle cone, a cylinder, and a 10-degree flare. The instabilities were seeded using a pre-existing set of roughness inserts, with small, discrete roughness elements. The elements varied in spacing, height, and number of elements. The model was aligned to near 0.0 degree angle of attack. <div><br></div><div>The streamwise, Gortler-like instabilities travelled across the separated region onto the flare, where they were measured with pressure transducers and infrared thermography. The amplification of the instabilities was measured at a variety of Reynolds numbers, under both quiet and conventional noise flow. The results were compared to those of a smooth insert. Heat transfer results showed a streaking pattern, with a peak in heating visible in the streak. Heat flux increased linearly with Reynolds number. If transition was induced, the heat flux would begin to decrease. Power spectral density measurements of the pressure fluctuations indicated that the region within the streak contained two notable instabilities, one between 70 and 150 kHz, and one between 200 and 250 kHz. Transition was only measured in the spectral content in the region on the flare where a ”filling in” of streaks was visible in heat transfer results. Heat flux increased in an nonlinear manner with increasing roughness height. </div><div><br></div><div>The streak positioning and peak heat flux showed a high sensitivity to small, uncontrollable changes in run conditions throughout. Heat transfer results were largely repeatable for small angles of attack, less than 0.1 degrees. The streaks shifted slightly in width and position for angles of attack near 0.1 degrees. Small changes in the streak positioning and heat transfer magnitude were seen in repeatability runs; this is mostly attributable to small changes in initial run conditions. </div>
6

Preliminary Design of a High-Enthalpy Hypersonic Wind Tunnel Facility and Analysis of Flow Interactions in a High-Speed Missile Configuration

Joshua Craig Ownbey (10721112) 29 April 2021 (has links)
An approach for designing a high-enthalpy wind tunnel driven by exothermic chemical reactions was developed. Nozzle contours were designed using CONTUR, a program implementing the method of characteristics, to design nozzle contours at various flow conditions. A reacting mixture including nitrous oxide has been identified as the best candidate for providing clean air at high temperatures. The nitrous oxide has a few performance factors that were considered, specifically the combustion of the gas. Initial CFD simulations were performed on the nozzle and test region to validate flow characteristics and possible issues. Initial results show a fairly uniform exit velocity and ability to perform testing. In a second phase of the work, two generic, high-speed missile configurations were explored using numerical simulation. The mean flow was computed on both geometries at 0 and 45 roll and 0, 1, and 10 angle of attack. The computations identified complex flow structures, including three-dimensional shock/boundary-layer interactions, that varied considerably with angle of attack. <br>
7

Instability Measurements on Two Cone-Cylinder-Flares at Mach 6

Elizabeth Benitez (6196277) 26 July 2021 (has links)
This research focuses on measurements of a convective shear-layer instability seen naturally in quiet hypersonic flow. Experiments were carried out in the Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) at Purdue University. The BAM6QT provides low-disturbance hypersonic flow with freestream noise levels similar to what would be experienced by a flight vehicle. To obtain high-speed, off-the-surface measurements of the instability, a modified focused laser differential interferometer (FLDI) was first designed to work with the contoured Plexiglas windows available in the tunnel.<div><br>A cone-cylinder-flare geometry was then selected to study the instabilities related to an axisymmetric separation bubble at Mach 6. The sharp cone had a 5-degree half-angle, while flare angles of 10 degrees and 3.5 degrees were tested to compare axisymmetric compression with and without separation, respectively. Under quiet flow, laminar separation and reattachment was confirmed by schlieren and surface pressure-fluctuation measurements. Coherent traveling waves were observed. These were attributed to both the second-mode instability, as well as a shear-generated instability from the separation bubble. The symmetry of the bubble was found to be highly sensitive to angle of attack. Additionally, by introducing controlled disturbances on the cone upstream of the separation, larger-amplitude shear-generated waves were measured while the second-mode amplitudes remained unchanged. Therefore, the shear-generated waves were amplified moving through the shear layer, while the second mode remained neutrally stable. These appear to be the first measurements of traveling waves that are generated in the shear layer of a separation bubble in hypersonic flow. <br></div>
8

On Unsteadiness in 2-D and 3-D Shock Wave/Turbulent Boundary Layer Interactions

Waindim, Mbu January 2017 (has links)
No description available.
9

SCHLIEREN IMAGING AND INFRARED HEAT TRANSFER MEASUREMENTS ON A FLARED CONE AND CONE-CYLINDER-FLARE IN MACH-6 QUIET FLOW

Zachary Allen McDaniel (18431658) 26 April 2024 (has links)
<p dir="ltr">Pressure transducer, infrared heat transfer, and schlieren imaging data for a flared cone and cone-cylinder-flare in Mach 6 quiet flow are presented. Flared cone pressure transducer results show second-mode RMS values comparable to that found in prior experimental work. Second-mode frequency is found to linearly increase with increasing freestream unit Reynolds number, and frequency varies little between sensors for a given freestream unit Reynolds number. Turbulent intermittency begins to increase at a freestream unit Reynolds number 2x10<sup>6</sup>/m greater than the unit Reynolds number corresponding to peak second-mode RMS. peak RMS. High-speed schlieren imaging on the downstream section of the flared cone shows the second-mode disturbance following trends in power which correlate with PCB RMS. Infrared heat transfer results contain the azimuthal heating streak pattern observed for the flared cone in prior research, but the hot-cold-hot streak pattern is not seen due to limited model length. Streak heating occurs downstream of second-mode peak RMS over the freestream unit Reynolds number range of 6.4x10<sup>6</sup>/m to 10.4x10<sup>6</sup>/m. The heat transfer of streaks is found to vary significantly from streak to streak, while mean streak heating variation with freestream unit Reynolds number is small.</p><p dir="ltr">PCB results of the cone-cylinder-flare show intermittent turbulence at a freestream unit Reynolds number of 16.0x10<sup>6</sup>/m. Examination of shear-layer and second-mode instabilities show significant increases in RMS moving downstream along the flare and with increasing freestream unit Reynolds number. High-speed schlieren imaging of the shear-layer reattachment region on the flare show the presence of the shear-layer and second-mode instabilities when the model is configured with a sharp nose tip. The instabilities are not present with a blunt 5 mm radius nose tip. Heat transfer is observed to increase along the downstream portion of the flare. The sharp nose tip configuration has higher heat transfer rates than the 5 mm radius nose tip configuration.</p>
10

On the Advancement of Phenomenological and Mechanistic Descriptions of Unsteadiness in Shock-Wave/Turbulent-Boundary-Layer Interactions

Adler, Michael C. 29 August 2019 (has links)
No description available.

Page generated in 0.0279 seconds