• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering intracellular antibody libraries

Bernhard, Wendy Lynn 19 November 2008
The goal of this research is to understand how three different parameters affect single chain variable fragment (scFv) binding capacity. The parameters that were varied include the number of variable complementarity determining regions (CDRs), the number amino acids used to diversify CDRs, and configuration of the structure. How the parameters affect the binding capacity will be tested using the yeast two hybrid assay against five different protein domains. Eight scFv libraries were generated; the genes expressing the scFvs were constructed and the CDRs were randomized using PCR amplification. Genes expressing scFvs were cloned, using the homologous gap repair mechanism in <i>Saccharomyces cerevisiae</I>. Representative members of scFv libraries were sequenced to confirm correct construction.<p> Library diversity was calculated from the library transformation efficiency. Transformation efficiency refers to the number of cells that grew at the time of transformation of the scFv gene into yeast cells. There were significant differences in the diversity of the scFv libraries, which created difficulty in comparing the library binding capacities. Sequencing the scFv libraries revealed that on average 50% of each library contained correct scFv sequences. The percent of correct sequences within each library was then used to calculate the functional diversity.<p> The yeast two-hybrid assay was used to screen the scFv libraries for interactions and to test binding capacity. The binding capacity of the scFv libraries was tested and compared in five different yeast two-hybrid assays using five protein domains as the targets for each screen. The screening results showed that in all cases cyclic scFv libraries had a statistically significant higher binding capacity than linear scFv libraries despite a diversity bias against the cyclic libraries. There was no clear trend in binding capacity with the other two parameters; however, the four amino acid three CDR libraries dominated over the other libraries in almost every screen.<p> Some of the scFvs isolated from the screens were expressed in <i>E. coli</i> and <i>S. cerevisiae</i>to analyze for proper expression and correct size. All the scFvs that were isolated and analyzed were the correct size and could be purified using a poly histidine tag.<p> Due to its bioaffinity and specificity, scFvs were constructed to profile disease patterns, and to identify potential drug targets. In addition to its original application to health-related studies, scFvs could also be extended to locate potential metabolic bottlenecks, to alter metabolic flux to enhance productivity, and regulate metabolic bionetworks. Industrial microorganisms are generally carrying more than two sets of chromosomes, making it difficult to be genetically engineered when conventional approaches are employed. With the availability of scFvs as reported in this thesis, we are able to design specific scFvs that selectively bind to target proteins, resulting in re-routing of metabolic flux within the microorganism, toward a high productivity of desired product. ScFvs can be applied to industrial microorganisms directly, leading to the development of new fermentation processes.
2

Engineering intracellular antibody libraries

Bernhard, Wendy Lynn 19 November 2008 (has links)
The goal of this research is to understand how three different parameters affect single chain variable fragment (scFv) binding capacity. The parameters that were varied include the number of variable complementarity determining regions (CDRs), the number amino acids used to diversify CDRs, and configuration of the structure. How the parameters affect the binding capacity will be tested using the yeast two hybrid assay against five different protein domains. Eight scFv libraries were generated; the genes expressing the scFvs were constructed and the CDRs were randomized using PCR amplification. Genes expressing scFvs were cloned, using the homologous gap repair mechanism in <i>Saccharomyces cerevisiae</I>. Representative members of scFv libraries were sequenced to confirm correct construction.<p> Library diversity was calculated from the library transformation efficiency. Transformation efficiency refers to the number of cells that grew at the time of transformation of the scFv gene into yeast cells. There were significant differences in the diversity of the scFv libraries, which created difficulty in comparing the library binding capacities. Sequencing the scFv libraries revealed that on average 50% of each library contained correct scFv sequences. The percent of correct sequences within each library was then used to calculate the functional diversity.<p> The yeast two-hybrid assay was used to screen the scFv libraries for interactions and to test binding capacity. The binding capacity of the scFv libraries was tested and compared in five different yeast two-hybrid assays using five protein domains as the targets for each screen. The screening results showed that in all cases cyclic scFv libraries had a statistically significant higher binding capacity than linear scFv libraries despite a diversity bias against the cyclic libraries. There was no clear trend in binding capacity with the other two parameters; however, the four amino acid three CDR libraries dominated over the other libraries in almost every screen.<p> Some of the scFvs isolated from the screens were expressed in <i>E. coli</i> and <i>S. cerevisiae</i>to analyze for proper expression and correct size. All the scFvs that were isolated and analyzed were the correct size and could be purified using a poly histidine tag.<p> Due to its bioaffinity and specificity, scFvs were constructed to profile disease patterns, and to identify potential drug targets. In addition to its original application to health-related studies, scFvs could also be extended to locate potential metabolic bottlenecks, to alter metabolic flux to enhance productivity, and regulate metabolic bionetworks. Industrial microorganisms are generally carrying more than two sets of chromosomes, making it difficult to be genetically engineered when conventional approaches are employed. With the availability of scFvs as reported in this thesis, we are able to design specific scFvs that selectively bind to target proteins, resulting in re-routing of metabolic flux within the microorganism, toward a high productivity of desired product. ScFvs can be applied to industrial microorganisms directly, leading to the development of new fermentation processes.
3

Antibody Based Diagnostic and Therapeutic Approach for Alzheimer's Disease

January 2014 (has links)
abstract: Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause of death in United States, and the only one among top 10 death causes that cannot be prevented, cured or slowed. An estimated 5.4 million Americans live with AD, and this number is expected to triple by year 2050 as the baby boomers age. The cost of care for AD in the US is about $200 billion each year. Unfortunately, in addition to the lack of an effective treatment or AD, there is also a lack of an effective diagnosis, particularly an early diagnosis which would enable treatment to begin before significant neuronal damage has occurred. Increasing evidence implicates soluble oligomeric forms of beta-amyloid and tau in the onset and progression of AD. While many studies have focused on beta-amyloid, soluble oligomeric tau species may also play an important role in AD pathogenesis. Antibodies that selectively identify and target specific oligomeric tau variants would be valuable tools for both diagnostic and therapeutic applications and also to study the etiology of AD and other neurodegenerative diseases. Recombinant human tau (rhTau) in monomeric, dimeric, trimeric and fibrillar forms were synthesized and purified to perform LDH assay on human neuroblastoma cells, so that trimeric but not monomeric or dimeric rhTau was identified as extracellularly neurotoxic to neuronal cells. A novel biopanning protocol was designed based on phage display technique and atomic force microscopy (AFM), and used to isolate single chain antibody variable domain fragments (scFvs) that selectively recognize the toxic tau oligomers. These scFvs selectively bind tau variants in brain tissue of human AD patients and AD-related tau transgenic rodent models and have potential value as early diagnostic biomarkers for AD and as potential therapeutics to selectively target toxic tau aggregates. / Dissertation/Thesis / Doctoral Dissertation Chemical Engineering 2014

Page generated in 0.0228 seconds