• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Step Towards Closed-loop Control of Chitosan Degradation: Conjoint Thermal and Enzymatic Effect, Modelling and Sensing

2011 October 1900 (has links)
In scaffold-based tissue engineering, control of scaffold degradation turns out to be a critical issue for reliable clinical applications. Degradation in this thesis refers to mass loss. Most of the present control methods take the approach of scaffold material modification and/or scaffold work environment adjustment to address this issue. The latter can easily get to its limit, and the former is not promising in the in-vivo implementation. This thesis proposed a new approach to control of scaffold degradation, that is, closed-loop and real-time control. To realize this approach, this thesis has tackled three important problems, namely (1) effects on degradation, (2) modeling of degradation, and (3) real-time measurement of degradation. This thesis is grounded to a biomaterial called chitosan, as it is widely used for building scaffolds. For the first problem, a statistical experiment was designed and a factorial analysis was conducted. For the second problem, a combined empirical-based and probabilistic-based approach was taken. For the third problem, a prototype of a sensor, which is based on the concept of carbon nanotube (CNT) conductive polymer, was built and tested. This thesis concludes (1) a joint thermal and enzymatic effect is significant on chitosan degradation, (2) the model for chitosan degradation is accurate, and (3) real-time measurement of mass loss of scaffold by means of carbon nanotube film is feasible. The major contributions of this thesis are (i) the proposal of the concept of the closed-loop control of degradation, (ii) a finding that there is a significant conjoint thermal and enzymatic effect on chitosan degradation in terms of mass loss, and (iii) a prototype of the novel CNT (carbon nanotube) chitosan film sensor for real-time measurement of mass loss of the scaffold. The significance of these contributions is that they give us confidence to a full development of the closed-loop and real-time degradation control approach. This approach appears promising to bring forth a transformative impact to clinic applications of scaffold-based tissue regeneration.
2

Hyaluronan Based Biomaterials with Imaging Capacity for Tissue Engineering

Zhang, Yu January 2016 (has links)
This thesis presents the preparation of hyaluronan-based biomaterials with imaging capability and their application as scaffolds in tissue engineering. First, we have synthesized HA derivatives functionalized with different chemoselective groups. Then, functional ligands with capacities for hydrophobic drug loading, imaging, and metal ion coordination were chemically conjugated to HA by chemoselective reactions with these groups. An injectable in situ forming HA hydrogel was prepared by hydrazone cross-linking between hybrid iron-oxide nanogel and HA-aldehyde (paper-I). The degradation of this hydrogel could be monitored by MRI and UV-vis spectroscopy since it contained iron oxide as a contrast agent and pyrene as a fluorescent probe. Additionally, this hydrogel has a potential for a delivery of hydrophobic drugs due to its pyrene hydrophobic domains. The degradation study showed that degradability of the hydrogel was correlated with its structure. Based on the obtained results, disulfide cross-linked and fluorescently labeled hydrogels with different HA concentration were established as a model to study the relationship between the structure of the hydrogel and its degradability (paper-II). We demonstrated that disulfide cross-linked HA hydrogel could be tracked non-invasively by fluorescence imaging. It was proved that the in vivo degradation behavior of the hydrogel is predictable basing on its in vitro degradation study. In paper-III, we developed a disulfide cross-linked HA hydrogel for three-dimensional (3D) cell culture. In order to improve cell viability and adhesion to the matrix, HA derivatives were cross-linked in the presence of fibrinogen undergoing polymerization upon the action of thrombin. It led to the formation of an interpenetrating double network (IPN) of HA and fibrin. The results of 3D cell culture experiments revealed that the IPN hydrogel provides the cells with a more stable environment for proliferation. The results of the cellular studies were also supported by in vitro degradation of IPN monitored by fluorescence measurements of the degraded products. In paper-IV, the effect of biomineralization on hydrogel degradation was evaluated in a non-invasive manner in vitro. For this purpose, two types of fluorescently labeled hydrogels with the different ability for biomineralization were prepared. Fluorescence spectroscopy was applied to monitor degradation of the hydrogels in vitro under two different conditions in longitudinal studies. Under the supply of Ca2+ ions, the BP-modified hydrogel showed the tendency to bio-mineralization and reduction of the rate of degradation. Altogether, the performed studies showed the importance of imaging of hydrogel biomaterials in the design of optimized scaffolds for tissue engineering.
3

Polyhydroxybutyrate als Scaffoldmaterial für das Tissue Engineering von Knochen

Wollenweber, Marcus 10 May 2012 (has links)
In drei inhaltlich abgeschlossen Teilen werden Fragestellungen bearbeitet, die sich mit dem Einsatz von Polyhydroxybutyraten als Scaffoldmaterialien für das Tissue Engioneering von Knochen beschäftigen. Zunächst wird ein Prozess optimiert, in dem mittels Verpressen und Auslösen von Platzhaltern (Porogen) poröse Träger (Scaffolds) aus Poly-3-hydroxybuttersäure (P3HB) sowie aus P3co4HB hergestellt werden. Diese Scaffolds werden in der Folge mechanisch und strukturell charakterisiert, wobei Druckfestigkeit, Dauerfestigkeit und Viskoelastizität untersucht werden. Im Ergebnis finden sich mehrere Kandidaten, die für die weitere Testung im Tierversuch in Frage kommen. Weiter wird das Abbauverhalten von schmelzgeponnenen P3HB-Fäden untersucht. Dabei wird ein beschleunigtes Modellsystem gewählt, das noch möglichst nahe am physiologischen Fall aber ohne biologisch aktive Komponente (zB. Enzyme) definiert wurde. Die Charakterisierung bedient sich hier der Gelpermeationschromatographie (GPC), des gasgestützten Elektronenrastermikroskops (ESEM), der differentiellen Thermoanalyse (DSC) und der Rasterkraftmikroskopie. Als Ergebnis zeichnete sich ab, dass neben der hydrolytischen Degradation im Gegensatz zu PHB mit kleinerer spezifischer Oberfläche bei den Fäden auch Erosion zum Abbau beiträgt. Eine partikuläre Freisetzung wird nicht beobachtet. Im dritten Teil werden textile Scaffolds aus P3HB mit einer künstlichen extrazellulären Matrix aus Chondroitinsulfaten (CS) und Kollagen versehen. Dem CS kann hier ein positiver Einfluss auf die osteogene Differenzierung von humanen mesenchymalen Stammzellen (hMSC) nachgewiesen werden. Dies wird zum einen durch die verstärkte Expression der alkalischen Phosphatase (ALP) sowie durch die Hochregulation von Proteinen ersichtlich, die bei der osteogenen Differenzierung essentiell sind. In wenigen Gene-Arrays lässt sich ebenfalls erkennen, dass die osteogene Differenzierung durch CS positiv beeinflusst wird. Insbesondere frühe Marker wie ZBTB16 und IGFBPs werden hier identifiziert. Basierend auf den Teilergebnissen wird am Ende ein Beitrag geliefert, der das Tissue Engineering insbesondere für überkritische Röhrenknochendefekte als Methode interessant erscheinen lässt. Dabei werden mechanische Lasten durch konventionelle Fixateure aufgenommen und der Defektraum durch den mehrfachen Einsatz von bio-funktionalisierten flachen Scaffolds gefüllt.:1. Vorwort 3 2. Allgemeine Einführung 5 2.1 Der Knochen 5 2.1.1 Die Knochenbildung 5 2.1.2 Zur Anatomie und Physiologie des Knochens 7 2.2 Tissue Engineering 11 2.2.1 Zelltypen für das Tissue Engineering von Knochen 12 2.2.2 Scaffold Design im Tissue Engineering von Knochen 13 2.3 Polyhydroxyalkanoate 13 2.4 Tissue Engineering am Röhrenknochen 16 2.4.1 Poly(3-hydroxybutyrat)-Scaffolds für das Tissue Engineering von Knochenersatz 17 2.4.2 Matrix Engineering 18 2.5 Ziel der Arbeit 19 3. Mechanik poröser PHB-Scaffolds 21 3.1 Einleitung 21 3.2 Materialien und Methoden 23 3.2.1 Polyhydroxybutyrate und Porogene 23 3.2.2 Uniaxiales Heißpressen 24 3.2.3 Mikrographie 26 3.2.4 Dynamische Differenzkalorimetrie (DSC) 26 3.2.5 Mechanische Druckversuche 26 3.2.6 Mikrocomputertomographie (μCT) 27 3.2.7 Zellviabilität auf den Scaffolds 28 3.3 Ergebnisse 29 3.3.1 Mikrographie 29 3.3.2 Mikrocomputertomographie (μCT) 33 3.3.3 Druckversuche 37 3.3.4 Dynamische Differenzkalorimetrie (DSC) 40 3.3.5 Zellviabilität 40 3.4 Diskussion 40 3.5 Schlussfolgernde Zusammenfassung 46 4. Degradation von P3HB-Fasern 47 4.1 Degradation von Polyhydroxyalkanoaten 47 4.2 Materialien und Methoden 49 4.2.1 Herstellung und Vorbehandlung textiler P3HB-Konstrukte 49 4.2.2 Mechanische Prüfung 50 4.2.3 Beschleunigte Degradation 50 4.2.4 Untersuchung der Oberfläche 50 4.2.5 Dynamische Differenzkalorimetrie (DSC) 51 4.2.6 Gel-Permeations-Chromatographie (GPC) 51 4.3 Ergebnisse 52 4.3.1 Mechanische Tests 52 4.3.2 Die Charakterisierung der Oberfläche 52 4.3.3 Thermische Fasereigenschaften.55 4.3.4 Untersuchung der Molekulargewichte in der GPC 58 4.4 Diskussion 60 4.5 Schlussfolgernde Zusammenfassung 64 5. hMSC auf textilen Scaffolds 67 5.1 Einleitung 67 5.2 Material und Methoden 68 5.2.1 Erzeugung der P3HB-Scaffolds 68 5.2.2 Die Immobilisierung der EZM-Komponenten auf den Scaffolds 69 5.2.3 Isolation, Vorkultur, Besiedlung und Kultur der humanen mesenchymalen Vorläuferzellen 69 5.2.4 Kombinierte Bestimmung von ALP, MTT und Proteingehalt 71 5.2.5 Mikroskopische Untersuchungen 72 5.2.6 Nachweis der Kalziummineralisierung 73 5.2.7 Quantitative real time reverse transcribing polymerase chain reaction (rt-PCR) 73 5.2.8 cRNA Microarray-Untersuchung 74 5.2.9 Zusätzliche Experimente 75 5.3 Ergebnisse 76 5.3.1 Vorhergehende Untersuchung 76 5.3.2 Rasterelektronen-Mikroskopie 77 5.3.3 Konfokale Laser-Scanning-Mikroskopie 79 5.3.4 ALP-Aktivität, SDH-Aktivität und Proteingehalt 82 5.3.5 Mineralisierende Kalziumabscheidung 86 5.3.6 rt-PCR 87 5.3.7 cRNA Microarray-Untersuchung 90 5.3.8 Kulturen von hMSC mit Chondroitinsulfat als gelöstem Zusatz 93 5.4 Diskussion 93 5.5 Schlussfolgernde Zusammenfassung 98 6. Zusammenfassung 101

Page generated in 0.0912 seconds