• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Scalable Algorithms for Delaunay Mesh Generation

Slatton, Andrew G. January 2014 (has links)
No description available.
2

Scalable deadlock avoidance algorithms for flexible manufacturing systems

Zhang, Wenle January 2000 (has links)
No description available.
3

Modeling Large Social Networks in Context

Ho, Qirong 01 July 2014 (has links)
Today’s social and internet networks contain millions or even billions of nodes, and copious amounts of side information (context) such as text, attribute, temporal, image and video data. A thorough analysis of a social network should consider both the graph and the associated side information, yet we also expect the algorithm to execute in a reasonable amount of time on even the largest networks. Towards the goal of rich analysis on societal-scale networks, this thesis provides (1) modeling and algorithmic techniques for incorporating network context into existing network analysis algorithms based on statistical models, and (2) strategies for network data representation, model design, algorithm design and distributed multi-machine programming that, together, ensure scalability to very large networks. The methods presented herein combine the flexibility of statistical models with key ideas and empirical observations from the data mining and social networks communities, and are supported by software libraries for cluster computing based on original distributed systems research. These efforts culminate in a novel mixed-membership triangle motif model that easily scales to large networks with over 100 million nodes on just a few cluster machines, and can be readily extended to accommodate network context using the other techniques presented in this thesis.
4

Scalable Algorithms for the Analysis of Massive Networks

Angriman, Eugenio 22 March 2022 (has links)
Die Netzwerkanalyse zielt darauf ab, nicht-triviale Erkenntnisse aus vernetzten Daten zu gewinnen. Beispiele für diese Erkenntnisse sind die Wichtigkeit einer Entität im Verhältnis zu anderen nach bestimmten Kriterien oder das Finden des am besten geeigneten Partners für jeden Teilnehmer eines Netzwerks - bekannt als Maximum Weighted Matching (MWM). Da der Begriff der Wichtigkeit an die zu betrachtende Anwendung gebunden ist, wurden zahlreiche Zentralitätsmaße eingeführt. Diese Maße stammen hierbei aus Jahrzehnten, in denen die Rechenleistung sehr begrenzt war und die Netzwerke im Vergleich zu heute viel kleiner waren. Heute sind massive Netzwerke mit Millionen von Kanten allgegenwärtig und eine triviale Berechnung von Zentralitätsmaßen ist oft zu zeitaufwändig. Darüber hinaus ist die Suche nach der Gruppe von k Knoten mit hoher Zentralität eine noch kostspieligere Aufgabe. Skalierbare Algorithmen zur Identifizierung hochzentraler (Gruppen von) Knoten in großen Graphen sind von großer Bedeutung für eine umfassende Netzwerkanalyse. Heutigen Netzwerke verändern sich zusätzlich im zeitlichen Verlauf und die effiziente Aktualisierung der Ergebnisse nach einer Änderung ist eine Herausforderung. Effiziente dynamische Algorithmen sind daher ein weiterer wesentlicher Bestandteil moderner Analyse-Pipelines. Hauptziel dieser Arbeit ist es, skalierbare algorithmische Lösungen für die zwei oben genannten Probleme zu finden. Die meisten unserer Algorithmen benötigen Sekunden bis einige Minuten, um diese Aufgaben in realen Netzwerken mit bis zu Hunderten Millionen von Kanten zu lösen, was eine deutliche Verbesserung gegenüber dem Stand der Technik darstellt. Außerdem erweitern wir einen modernen Algorithmus für MWM auf dynamische Graphen. Experimente zeigen, dass unser dynamischer MWM-Algorithmus Aktualisierungen in Graphen mit Milliarden von Kanten in Millisekunden bewältigt. / Network analysis aims to unveil non-trivial insights from networked data by studying relationship patterns between the entities of a network. Among these insights, a popular one is to quantify the importance of an entity with respect to the others according to some criteria. Another one is to find the most suitable matching partner for each participant of a network knowing the pairwise preferences of the participants to be matched with each other - known as Maximum Weighted Matching (MWM). Since the notion of importance is tied to the application under consideration, numerous centrality measures have been introduced. Many of these measures, however, were conceived in a time when computing power was very limited and networks were much smaller compared to today's, and thus scalability to large datasets was not considered. Today, massive networks with millions of edges are ubiquitous, and a complete exact computation for traditional centrality measures are often too time-consuming. This issue is amplified if our objective is to find the group of k vertices that is the most central as a group. Scalable algorithms to identify highly central (groups of) vertices on massive graphs are thus of pivotal importance for large-scale network analysis. In addition to their size, today's networks often evolve over time, which poses the challenge of efficiently updating results after a change occurs. Hence, efficient dynamic algorithms are essential for modern network analysis pipelines. In this work, we propose scalable algorithms for identifying important vertices in a network, and for efficiently updating them in evolving networks. In real-world graphs with hundreds of millions of edges, most of our algorithms require seconds to a few minutes to perform these tasks. Further, we extend a state-of-the-art algorithm for MWM to dynamic graphs. Experiments show that our dynamic MWM algorithm handles updates in graphs with billion edges in milliseconds.
5

A computational framework for the solution of infinite-dimensional Bayesian statistical inverse problems with application to global seismic inversion

Martin, James Robert, Ph. D. 18 September 2015 (has links)
Quantifying uncertainties in large-scale forward and inverse PDE simulations has emerged as a central challenge facing the field of computational science and engineering. The promise of modeling and simulation for prediction, design, and control cannot be fully realized unless uncertainties in models are rigorously quantified, since this uncertainty can potentially overwhelm the computed result. While statistical inverse problems can be solved today for smaller models with a handful of uncertain parameters, this task is computationally intractable using contemporary algorithms for complex systems characterized by large-scale simulations and high-dimensional parameter spaces. In this dissertation, I address issues regarding the theoretical formulation, numerical approximation, and algorithms for solution of infinite-dimensional Bayesian statistical inverse problems, and apply the entire framework to a problem in global seismic wave propagation. Classical (deterministic) approaches to solving inverse problems attempt to recover the “best-fit” parameters that match given observation data, as measured in a particular metric. In the statistical inverse problem, we go one step further to return not only a point estimate of the best medium properties, but also a complete statistical description of the uncertain parameters. The result is a posterior probability distribution that describes our state of knowledge after learning from the available data, and provides a complete description of parameter uncertainty. In this dissertation, a computational framework for such problems is described that wraps around the existing forward solvers, as long as they are appropriately equipped, for a given physical problem. Then a collection of tools, insights and numerical methods may be applied to solve the problem, and interrogate the resulting posterior distribution, which describes our final state of knowledge. We demonstrate the framework with numerical examples, including inference of a heterogeneous compressional wavespeed field for a problem in global seismic wave propagation with 10⁶ parameters.

Page generated in 0.0709 seconds