1 |
Experimental Studies of Scalar Transport and Mixing in a Turbulent Shear FlowBehnamian, Amir January 2015 (has links)
High resolution, multi-sensor, hot/cold-wire measurements were made in passively heated, uniformly sheared turbulence in a wind-tunnel. Measurements were focused on terms that are important for modelling of the scalar probability density function (PDF) equation. Unlike previous studies, which considered a single combination of velocity and scalar fields at a time, in this study three different scalar fields were investigated in the same nearly homogeneous turbulence with three passively superimposed temperature fields, namely a transversely homogeneous temperature field with a uniform mean gradient, and two inhomogeneous temperature fields, the plume of a heated line source and a thermal mixing layer. The use of the same uniformly sheared flow allowed the isolation of the effects of scalar inhomogeneity and initial conditions by evaluating the results in the three scalar fields. Thus, the measurements covered a wide range of scalar field conditions and set the ground for a conclusive comparison. For the homogeneous scalar field, results conformed with the literature: the scalar PDF was essentially Gaussian; the conditional expectations of velocities upon the scalar value were approximately linear; and the conditional expectation of the scalar dissipation rate upon the scalar value was mildly anisotropic and had a shape that was similar to those of any of its three parts, which justifies the use of the streamwise part as a surrogate for the total. All these properties behaved very differently in two inhomogeneous scalar fields, the thermal mixing layer and the plume of a heated line source: the scalar PDFs were distinctly sub-Gaussian; the conditional velocity expectations were non-linear functions of the scalar value; and the conditional scalar dissipation rates were very strongly anisotropic, as well as depending on the scalar value in fashions that differed strongly from those of any of their three parts.
|
2 |
Lattice Boltzmann equation simulations of turbulence, mixing, and combustionYu, Huidan 12 April 2006 (has links)
We explore the capability of lattice Boltzmann equation (LBE) method for complex
fluid flows involving turbulence, mixing, and reaction.
In the first study, LBE schemes for binary scalar mixing and multi-component
reacting flow with reactions are developed. Simulations of initially non-premixed
mixtures yield scalar probability distribution functions that are in good agreement
with numerical data obtained from Navier-Stokes (NS) equation based computation.
One-dimensional chemically-reacting flow simulation of a premixed mixture yields a
flame speed that is consistent with experimentally determined value.
The second study involves direct numerical simulation (DNS) and large-eddy
simulation (LES) of decaying homogenous isotropic turbulence (HIT) with and without
frame rotation. Three categories of simulations are performed: (i) LBE-DNS in
both inertial and rotating frames; (ii) LBE-LES in inertial frame; (iii) Comparison
of the LBE-LES vs. NS-LES. The LBE-DNS results of the decay exponents for kinetic
energy k and dissipation rate ε, and the low wave-number scaling of the energy
spectrum agree well with established classical results. The LBE-DNS also captures
rotating turbulence physics. The LBE-LES accurately captures low-wave number
scaling, energy decay and large scale structures. The comparisons indicate that the
LBE-LES simulations preserve flow structures somewhat more accurately than the
NS-LES counterpart.
In the third study, we numerically investigate the near-field mixing features in low
aspect-ratio (AR) rectangular turbulent jets (RTJ) using the LBE method. We use
D3Q19 multiple-relaxation-time (MRT) LBE incorporating a subgrid Smagorinsky
model for LES. Simulations of four jets which characterized by AR, exit velocity,
and Reynolds number are performed. The investigated near-field behaviors include:
(1) Decay of mean streamwise velocity (MSV) and inverse MSV; (2) Spanwise and
lateral profiles of MSV; (3) Half-velocity width development and MSV contours; and
(4) Streamwise turbulence intensity distribution and spanwise profiles of streamwise
turbulence intensity. The computations are compared against experimental data and
the agreement is good. We capture both unique features of RTJ: the saddle-back
spanwise profile of MSV and axis-switching of long axis from spanwise to lateral
direction.
Overall, this work serves to establish the feasibility of the LBE method as a
viable tool for computing mixing, combustion, and turbulence.
|
3 |
Adaptive and convergent methods for large eddy simulation of turbulent combustionHeye, Colin Russell 16 March 2015 (has links)
In the recent past, LES methodology has emerged as a viable tool for modeling turbulent combustion. LES computes the large scale mixing process accurately, thereby providing a better starting point for small-scale models that describe the combustion process. Significant effort has been made over past decades to improve accuracy and applicability of the LES approach to a wide range of flows, though the current conventions often lack consistency to the problems at hand. To this end, the two main objectives of this dissertation are to develop a dynamic transport equation-based combustion model for large- eddy simulation (LES) of turbulent spray combustion and to investigate grid- independent LES modeling for scalar mixing. Long-standing combustion modeling approaches have shown to be suc- cessful for a wide range of gas-phase flames, however, the assumptions required to derive these formulations are invalidated in the presence of liquid fuels and non-negligible evaporation rates. In the first part of this work, a novel ap- proach is developed to account for these evaporation effects and the resulting multi-regime combustion process. First, the mathematical formulation is de- rived and the numerical implementation in a low-Mach number computational solver is verified against one-dimensional and lab scale, both non-reacting and reacting spray-laden flows. In order to clarify the modeling requirements in LES for spray combustion applications, results from a suite of fully-resolved direct numerical simulations (DNS) of a spray laden planar jet flame are fil- tered at a range of length scales. LES results are then validated against two sets of experimental jet flames, one having a pilot and allowing for reduced chemistry modeling and the second requiring the use of detail chemistry with in situ tabulation to reduce the computational cost of the direct integration of a chemical mechanism. The conventional LES governing equations are derived from a low-pass filtering of the Navier-Stokes equations. In practice, the filter used to derive the LES governing equations is not formally defined and instead, it is assumed that the discretization of LES equations will implicitly act as a low-pass filter. The second part of this study investigates an alternative derivation of the LES governing equations that requires the formal definition of the filtering operator, known as explicitly filtered LES. It has been shown that decoupling the filter- ing operation from the underlying grid allows for the isolation of subfilter-scale modeling errors from numerical discretization errors. Specific to combustion modeling are the aggregate errors associated with modeling sub-filter distribu- tions of scalars that are transported by numerical impacted turbulent fields. Quantities of interest to commonly-used combustion models, including sub- filter scalar variance and filtered scalar dissipation rate, are investigated for both homogeneous and shear-driven turbulent mixing. / text
|
4 |
Droplet-resolved direct numerical simulation of fuel droplet evaporationJain, Abhishek January 2022 (has links)
No description available.
|
5 |
Analysis Of Kappa Meson In Light Cone Qcd Sum RulesBaytemir, Gulsen 01 September 2011 (has links) (PDF)
In the present work some hadronic properties of the scalar &kappa / meson are studied.
Using the QCD sum rules approach, which is a nonperturbative method, the
mass and the overlap amplitude of this meson are calculated. As well as the
mass and the overlap amplitude, &kappa / &rarr / K^+&pi / ^&minus / decay is also studied. For this
decay the coupling constant g_&kappa / K^+&pi / ^&minus / is obtained using light cone QCD sum rules
which is an extension of the QCD sum rules method. Moreover, the coupling
constant is calculated using the experimental decay width and it is compared
with the value obtained in light cone QCD sum rules approach. The result of
the calculation of g_&kappa / K^+&pi / ^&minus / , the one obtained from light cone QCD sum rules
approach, is also applied to acquire the f_0 &minus / &sigma / scalar mixing angle, &theta / s, using
the ratio g^2 (&kappa / &rarr / K^+&pi / ^&minus / )/g^2 (&sigma / &rarr / &pi / &pi / ) obtained from experimental decay width.
The value of scalar mixing angle is also compared with its experimental results.
|
6 |
Experimental studies in jet flows and zero pressure-gradient turbulent boundary layersÖrlü, Ramis January 2009 (has links)
This thesis deals with the description and development of two classical turbulent shear flows, namely free jet and flat plate turbulent boundary layer flows. In both cases new experimental data has been obtained and in the latter case comparisons are also made with data obtained from data bases, both of experimental and numerical origin. The jet flow studies comprise three parts, made in three different experimental facilities, each dealing with a specific aspect of jet flows. The first part is devoted to the effect of swirl on the mixing characteristics of a passive scalar in the near-field region of a moderately swirling jet. Instantaneous streamwise and azimuthal velocity components as well as the temperature were simultaneously accessed by means of combined X-wire and cold-wire anemometry. The results indicate a modification of the turbulence structures to that effect that the swirling jet spreads, mixes and evolves faster compared to its non-swirling counterpart. The high correlation between streamwise velocity and temperature fluctuations as well as the streamwise passive scalar flux are even more enhanced due to the addition of swirl, which in turn shortens the distance and hence time needed to mix the jet with the ambient air. The second jet flow part was set out to test the hypothesis put forward by Talamelli & Gavarini (Flow, Turbul. & Combust. 76), who proposed that the wake behind a separation wall between two streams of a coaxial jet creates the condition for an absolute instability. The experiments confirm the hypothesis and show that the instability, by means of the induced vortex shedding, provides a continuous forcing mechanism for the control of the flow field. The potential of this passive mechanism as an easy, effective and practical way to control the near-field of interacting shear layers as well as its effect towards increased turbulence activity has been shown. The third part of the jet flow studies deals with the hypothesis that so called oblique transition may play a role in the breakdown to turbulence for an axisymmetric jet.For wall bounded flows oblique transition gives rise to steady streamwise streaks that break down to turbulence, as for instance documented by Elofsson & Alfredsson (J. Fluid Mech. 358). The scenario of oblique transition has so far not been considered for jet flows and the aim was to study the effect of two oblique modes on the transition scenario as well as on the flow dynamics. For certain frequencies the turbulence intensity was surprisingly found to be reduced, however it was not possible to detect the presence of streamwise streaks. This aspect must be furher investigated in the future in order to understand the connection between the turbulence reduction and the azimuthal forcing. The boundary layer part of the thesis is also threefold, and uses both new data as well as data from various data bases to investigate the effect of certain limitations of hot-wire measurements near the wall on the mean velocity but also on the fluctuating streamwise velocity component. In the first part a new set of experimental data from a zero pressure-gradient turbulent boundary layer, supplemented by direct and independent skin friction measurements, are presented. The Reynolds number range of the data is between 2300 and 18700 when based on the free stream velocity and the momentum loss thickness. Data both for the mean and fluctuating streamwise velocity component are presented. The data are validated against the composite profile by Chauhan et al. (Fluid Dyn. Res. 41) and are found to fulfil recently established equilibrium criteria. The problem of accurately locating the wall position of a hot-wire probe and the errors this can result in is thoroughly discussed in part 2 of the boundary layer study. It is shown that the expanded law of the wall to forth and fifth order with calibration constants determined from recent high Reynolds number DNS can be used to fix the wall position to an accuracy of 0.1 and 0.25 l_ * (l_* is the viscous length scale) when accurately determined measurements reaching y+=5 and 10, respectively, are available. In the absence of data below the above given limits, commonly employed analytical functions and their log law constants, have been found to affect the the determination of wall position to a high degree. It has been shown, that near-wall measurements below y+=10 or preferable 5 are essential in order to ensure a correctly measured or deduced absolute wall position. A number of peculiarities in concurrent wall-bounded turbulent flow studies, was found to be associated with a erroneously deduced wall position. The effect of poor spatial resolution using hot-wire anemometry on the measurements of the streamwise velocity is dealt with in the last part. The viscous scaled hot-wire length, L+, has been found to exert a strong impact on the probability density distribution (pdf) of the streamwise velocity, and hence its higher order moments, over the entire buffer region and also the lower region of the log region. For varying Reynolds numbers spatial resolution effects act against the trend imposed by the Reynolds number. A systematic reduction of the mean velocity with increasing L+ over the entire classical buffer region and beyond has been found. A reduction of around 0.3 uƬ, where uƬ is the friction velocity, has been deduced for L+=60 compared to L+=15. Neglecting this effect can lead to a seemingly Reynolds number dependent buffer or log region. This should be taken into consideration, for instance, in the debate, regarding the prevailing influence of viscosity above the buffer region at high Reynolds numbers. We also conclude that the debate concerning the universality of the pdf within the overlap region has been artificially complicated due to the ignorance of spatial resolution effects beyond the classical buffer region on the velocity fluctuations. / QC 20100820
|
7 |
Combined PIV/PLIF measurements in a high-swirl fuel injector flowfieldCheng, Liangta January 2013 (has links)
Current lean-premixed fuel injector designs have shown great potential in terms of reducing emissions of pollutants, but such designs are susceptible to combustion instabilities in which aerodynamic instability plays a major role and also has an effect on mixing of air and fuel. In comparison to prototype testing with combustors running in operating conditions, computational approaches such as Large Eddy Simulations (LES) offer a much more cost-effective alternative in the design stage. However, computational models employed by LES require validation by experimental data. This is one of the main motivations behind the present experimental study. Combined particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF) instrumentation allowed simultaneous measurements of velocity vector and a conserved scalar introduced into the fuel stream. The results show that the inner swirl shear layer features two pairs of vortices, which draw high concentration fuel mixture from the central jet into the swirl stream and causes it to rotate in their wakes. Such periodic entrainment also occurs with the characteristic frequencies of the vortices. This has clear implications for temporal variations in fuel/air ratio in a combusting flow; these bursts of mixing, and hence heat release, could be a possible cause of mixing-induced pressure oscillation in combusting tests. For the first time in such a flow, all 3 components of the turbulent scalar flux were available for validation of LES-based predictions. A careful assessment of experimental errors, particularly the error associated with spatial filtering, was carried out. Comparison of LES predictions with experimental data showed very good agreement for both 1st and 2nd moment statistics, as well as spectra and scalar pdfs. It is particularly noteworthy that comparison between LES computed and measured scalar fluxes was very good; this represents successful validation of the simple (constant Schmidt number) SGS model used for this complex and practically important fuel injector flow. In addition to providing benchmark data for the validation of LES predictions, a new experimental technique has been developed that is capable of providing spatially resolved residence time data. Residence times of combustors have commonly been used to help understand NOx emissions and can also contribute to combustion instabilities. Both the time mean velocity and turbulence fields are important to the residence time, but determining the residence time via analysis of a measured velocity field is difficult due to the inherent unsteadiness and the three dimensional nature of a high-Re swirling flow. A more direct approach to measure residence time is reported here that examines the dynamic response of fuel concentration to a sudden cutoff in the fuel injection. Residence time measurement was mainly taken using a time-resolved PLIF technique, but a second camera for PIV was added to check that the step change does not alter the velocity field and the spectral content of the coherent structures. Characteristic timescales evaluated from the measurements are referred to as convection and half-life times: The former describes the time delay from a fuel injector exit reference point to a downstream point of interest, and the latter describes the rate of decay once the effect of the reduced scalar concentration at the injection source has been transported to the point of interest. Residence time is often defined as the time taken for a conserved scalar to reduce to half its initial value after injection is stopped: this is equivalent to the sum of the convection time and the half-life values. The technique was applied to a high-swirl fuel injector typical of that found in combustor applications. Two test cases have been studied: with central jet (with-jet) and without central jet (no-jet). It was found that the relatively unstable central recirculation zone of the no-jet case resulted in increased transport of fuel into the central region that is dominated by a precessing vortex core, where long half-life times are also found. Based on this, it was inferred that the no-jet case may be more prone to NOx production. The technique is described here for a single-phase isothermal flow field, but with consideration, it could be extended to studying reacting flows to provide more insight into important mixing phenomena and relevant timescales.
|
Page generated in 0.0532 seconds