• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 310
  • 267
  • 66
  • 18
  • 17
  • 12
  • 11
  • 8
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1119
  • 1119
  • 943
  • 269
  • 262
  • 259
  • 252
  • 236
  • 208
  • 164
  • 141
  • 140
  • 133
  • 118
  • 100
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Secondary electron emission in coincidence with primary energy losses

Muellejans, Harald January 1992 (has links)
No description available.
2

Quantitative X-ray spectrometry using the environmental scanning electron microscope /

Carlton, Robert A., January 2001 (has links)
Thesis (Ph. D.)--Lehigh University, 2001. / Includes vita. Includes bibliographical references (leaves 200-206).
3

A procedure to characterize electron-beam resist using a scanning electron microscope and study of process optimization of an electron beam imaging system using experimental design methods /

Pyles, Randall C. January 1992 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1992. / Typescript. Includes bibliographical references (leaves 114-116).
4

An EBSD study on mapping of small orientation differences in lattice mismatched heterostructures /

Tao, Xiaodong, January 2003 (has links)
Thesis (Ph. D.)--Lehigh University, 2004. / Includes vita. Includes bibliographical references (leaves 184-195).
5

Nanoscale Manipulation under Scanning Electron Microscopy

Chen, Ko-Lun Brandon 05 March 2014 (has links)
A nanomanipulation system operating inside a scanning electron microscope (SEM) enables visual observation and physical interactions with objects at the nanometer scale. Compared to SEM that is a powerful imaging platform (‘eyes’), the development of nanomanipulation systems (‘hands) and techniques for transporting, modifying, and interacting with micro/nanoscaled objects is lagging behind. Two generations of nanomanipulation systems were developed with high SEM compatibility. The vacuum load-lock feature allows setup/sample/end-tools changes to be made within minutes instead of hours as with existing nanomanipulation systems. The integrated high resolution encoders and automation features significantly ease the skill dependency in nanomanipulation. Its small shape factor minimizes effects on SEM imaging performance, and does not restrict the use of the many detectors inside a SEM. The new nanomanipulation systems were applied to the manipulation of sub-cellular structures and the characterization of nano-structures. The first application involves the development of a technique to surgically extract sub-micrometer-sized subnuclear structures within a single cell’s nucleus, followed by biochemical analysis to amplify and sequence the genes contained within. Enabled by the technique, four novel genomic loci associations with promyelocytic leukemia nuclear bodies (PML NB) were discovered in Jurkat cells. The second application targets automated probing of nanostructures under poor imaging conditions. Through real-time image drift compensation and visual servoing of the nano probes, automated probing of nanostructures was achieved with a high success rate and a speed at least three times higher than skilled operator. To enhance the functions of the nanomanipulation system, new types of end-effectors were also developed. A MEMS tool with changeable tool tips was design and prototyped. In-situ (i.e., inside SEM) tool tip change was demonstrated for gripping objects that vary in size by two orders of magnitude (15 um to 100 nm) with a single microgripper body. Furthermore, a microfabrication process was developed to produce changeable nano-spatulas with tip size less than 10 nm, intended for use in the subnuclear structure extraction work. Finally, a local precursor sublimation technique compatible with the nanomanipulation system was developed for enhancing electron beam induced deposition (EBID) inside the SEM.
6

Nanoscale Manipulation under Scanning Electron Microscopy

Chen, Ko-Lun Brandon 05 March 2014 (has links)
A nanomanipulation system operating inside a scanning electron microscope (SEM) enables visual observation and physical interactions with objects at the nanometer scale. Compared to SEM that is a powerful imaging platform (‘eyes’), the development of nanomanipulation systems (‘hands) and techniques for transporting, modifying, and interacting with micro/nanoscaled objects is lagging behind. Two generations of nanomanipulation systems were developed with high SEM compatibility. The vacuum load-lock feature allows setup/sample/end-tools changes to be made within minutes instead of hours as with existing nanomanipulation systems. The integrated high resolution encoders and automation features significantly ease the skill dependency in nanomanipulation. Its small shape factor minimizes effects on SEM imaging performance, and does not restrict the use of the many detectors inside a SEM. The new nanomanipulation systems were applied to the manipulation of sub-cellular structures and the characterization of nano-structures. The first application involves the development of a technique to surgically extract sub-micrometer-sized subnuclear structures within a single cell’s nucleus, followed by biochemical analysis to amplify and sequence the genes contained within. Enabled by the technique, four novel genomic loci associations with promyelocytic leukemia nuclear bodies (PML NB) were discovered in Jurkat cells. The second application targets automated probing of nanostructures under poor imaging conditions. Through real-time image drift compensation and visual servoing of the nano probes, automated probing of nanostructures was achieved with a high success rate and a speed at least three times higher than skilled operator. To enhance the functions of the nanomanipulation system, new types of end-effectors were also developed. A MEMS tool with changeable tool tips was design and prototyped. In-situ (i.e., inside SEM) tool tip change was demonstrated for gripping objects that vary in size by two orders of magnitude (15 um to 100 nm) with a single microgripper body. Furthermore, a microfabrication process was developed to produce changeable nano-spatulas with tip size less than 10 nm, intended for use in the subnuclear structure extraction work. Finally, a local precursor sublimation technique compatible with the nanomanipulation system was developed for enhancing electron beam induced deposition (EBID) inside the SEM.
7

A new spectroscopic method for the non-destructive characterization of weathering damage in plastics /

George, Andrew R. January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. School of Technology, 2006. / Includes bibliographical references (p. 153-160).
8

Gaseous secondary electron detection and cascade amplification in the environmental scanning electron microscope /

Morgan, Scott Warwick. January 2005 (has links)
Thesis (Ph. D.)--University of Technology, Sydney, 2005.
9

Application studies of scanning electron microscope photographs for micro-measurements and three dimensional mapping /

Nagaraja, Hebbur N. January 1974 (has links)
No description available.
10

Use of scanning electron microscopy to evaluate cereal grains and their mill fractions

Cashman, William Elliot January 2011 (has links)
Digitized by Kansas Correctional Industries

Page generated in 0.1009 seconds