• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stress Analysis on Adhesive Bonded Joint of Composite Tube due to Torsion

Wang, Wei-Te 07 September 2001 (has links)
The purpose of this thesis is aimed to predict that what kind of adhesive bonded joint of composite tube the can obtain more efficient structure. APC-2 sixteen-layer laminates of AS-4/PEEK were used as adherends, including cross-ply [0/90]4S and quasi-isotropic [0/45/90/-45]2S laminates. And we use two different kinds of adhesive bonded joints, including stepped lap joint and scarf lap joint. On the aspect of numerical analysis, we employ finite element method incorporate with the software of ANSYS 5.5.1 to obtain the distribution of stress on adhesive bonded joint. In this thesis, there are two kinds of geometrical shape on stepped lap joint. The bonded layer height h that is vertical to the axis of the composite tube is 2mm and 5mm. There are also two kinds of the geometrical shape on scarf lap joint. The angle £\ between the bonded layer and the axis of the composite tube is 30¢Xand 45¢X.The boundary condition on one side of the composite tube is assumed to be fixed. The other side of the composite tube is due to torsion. According to the numerical result, the stepped lap joint with h=5mm and quasi-isotropic [0/45/90/-45] occurs minimum von Mises stress, and we predict this kind of joint can sustain the maximum external load and obtain better efficiency. In this thesis, the geometrical shape, size and the direction of laminates of the joint will effect the distribution of stress.

Page generated in 0.0723 seconds