• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characteristics of the deep scattering layer in the Gulf of Mexico as they relate to sperm whale diving and foraging behavior

Azzara, Alyson Julie 15 May 2009 (has links)
This research was carried out in support of fieldwork in the Gulf of Mexico in summers 2004 and 2005 as part of the multidisciplinary Sperm Whale Seismic Study (SWSS). Important aspects of SWSS research include oceanographic habitat characterization and studies of sperm whale foraging and diving patterns. During the SWSS 2005 cruise, acoustic volume backscatter data were collected using a 38 kHz ADCP for comparison with XBT, MODIS ocean color data, and whale dive profiles extrapolated from analysis of towed passive acoustic hydrophone array recordings of whale vocalizations. This unique data set, collected from a cyclonic eddy, was compared with non-upwelling conditions surveyed in the western Gulf and the Mississippi Canyon in summer 2004. My focus was to examine the relationship between acoustic backscatter intensity from the deep scattering layer (DSL; usually 400-600 m deep) and the depths to which whales dived. The results of the study investigate differences in DSL characteristics between divergent zones and non-divergent zones, and examine connections relating to variations in sperm whale dive patterns. The analysis of 38 kHz ADCP data showed that there were significant differences in some characteristics of the main DSL dependent on time of day. There were no significant differences in characteristics of the main DSL between divergent and non-divergent areas or between 2004 and 2005. The comparison of the 38 kHz ADCP and the 70 kHz Simrad echosounder data yielded a relationship of 4 ADCP counts for every 1 dB of Sv. This relationship was a promising start to a potential calibration for the ADCP instrument. Lastly, the analysis of localized sperm whale dive profiles identified three basic dive profiles; Deep (> 800 m), Mid-water dives to DSL depths (500 - 800 m) and Shallow (<500 m). The analysis also showed that whale dive behavior did not change based on time of day or location. It showed that whales are diving above the DSL as well as through and below, however these dives are independent of differences in DSL characteristics.
2

Investigation into a prominent 38 kHz scattering layer in the North Sea

Mair, Angus MacDonald January 2008 (has links)
The aim of this study was to investigate the composition of an acoustic scattering layer in the North Sea that is particularly strong at 38 kHz. A full definition of the biological composition of the layer, along with its acoustic properties, would allow for it to be confidently removed from data collected during acoustic fish surveys, where it presents a potential source of bias. The layer, traditionally and informally referred to as consisting of zooplankton, appears similar to others observed internationally. The methodology utilised in this study consisted of biological and acoustic sampling, followed by application of forward and inverse acoustic modelling techniques. Acoustic data was collected at 38, 120 and 200 kHz in July 2003, with the addition of 18 kHz in July 2004. Net samples were collected in layers of relatively strong 38 kHz acoustic scattering using a U-tow vehicle (2003) and a MIKT net (2004). Acoustic data were scrutinised to determine actual backscattering, expressed as mean volume backscattering strength (MVBS) (dB). This observed MVBS (MVBSobs) was compared with backscattering predicted by applying the forward problem solution (MVBSpred) to sampled animal densities in order to determine whether those animals were responsible for the enhanced 38 kHz scattering. In most instances, MVBSobs > MVBSpred, more pronounced at 38 kHz. It was found that MVBSpred approached MVBSobs more closely with MIKT than with U-tow samples, but that the 38 kHz mismatch was present in both. Inversion of candidate acoustic models predicted gas-bearing scatterers, which are strong at 38 kHz, as most likely to be responsible for this. Potential sources of inconsistencies between MVBSpred and MVBSobs were identified. The presented forward and inverse solutions infer that although the layer often contains large numbers of common zooplankton types, such as copepods and euphausiids, these are not the dominant acoustic scatterer at 38 kHz. Rather, there remains an unidentified, probably gas-bearing scatterer that contributes significantly to observed scattering levels at this frequency. This study identifies and considerably narrows the list of candidates that are most likely to be responsible for enhanced 38 kHz scattering in the North Sea layer, and recommendations are made for potential future studies.
3

Behavioral flexibility of feeding dusky dolphins (Lagenorhynchus obscurus) in Admiralty Bay, New Zealand

McFadden, Cynthia Joy 30 September 2004 (has links)
Foraging theory suggests that hungry animals balance a complex set of costs and benefits when determining what and how to eat. Prey distribution, patch size, and the presence of conspecifics are important factors influencing a predator's feeding tactics, including the decision to feed individually or socially. Dusky dolphins (Lagenorhynchus obscurus) in New Zealand employ different feeding tactics in varying habitats and seasons. I used programmed survey routes and opportunistic sightings to examine the habitat use and feeding mechanics of dusky dolphins in Admiralty Bay, New Zealand, a protected shallow-water environment frequented by wintering dolphins. I encountered 253 dolphin groups, of which 58.5% were engaged in food-acquisition activities. Photographic efforts revealed a total of 177 individually-recognizable dolphins, 100 of which were returnees from previous seasons. Thirty-seven feeding groups and 70 bouts of feeding behavior were followed. Two-minute interval sampling as well as active acoustic sonar were used to test the hypothesis that diurnally-feeding dolphins would work in a coordinated manner to bring schooling fish to the surface. Feeding tactics observed in Admiralty Bay were then compared to foraging by some of the same animals in the unprotected, deep-water environment off Kaikoura, where large numbers of dusky dolphins feed during the night on organisms associated with a vertically-migrating scattering layer. Evidence supporting coordinated surface feeding was not statistically significant, but indicative of behavioral flexibility in feeding styles as part of a larger feeding repertoire. A potential shift in prey distribution from previous years may also explain some observed patterns. Feeding groups were positively correlated with seabirds and New Zealand fur seals (Arctocephalus forsteri). Mean group size of 6.1 (± 8.23 S.D., n=253) in Admiralty Bay is dramatically less than groups observed off Kaikoura, a variation likely reflecting differences in prey number and distribution, as well as differences in predation risk by deep-water sharks and killer whales. Behavioral flexibility likely confers an adaptive advantage for species subject to environmental fluctuation, whether due to natural or anthropogenic sources. Further research is necessary to evaluate prey distribution in Admiralty Bay and its possible effects on feeding dusky dolphins.
4

Applied Studies of Metal-Based Light Scattering Layer and External Lightguide on Dye-Sensitized Solar Cells

Tsai, Ming-Lang 08 July 2012 (has links)
Dye-sensitized solar cells (DSSCs), based on use of a black counter electrode (BCE) and thin TiO2 electrode (photoelectrode), have been developed to reduce related manufacturing costs. Despite their effectiveness in lowering manufacturing cost, the above DSSCs have a low photovoltaic performance, owing to their insufficient light harvesting efficiency. This work presents a novel metal-based light scattering layer (MLSL), which can be formed either on a black counter electrode or on a thin TiO2 electrode, to reflect the light passing through the latter. The proposed MLSL increases the light harvesting efficiency from the interior of the cell, thus enhancing the photovoltaic performance of DSSC. Experimental results indicate that the proposed MLSL also reduces the internal resistance, as well as increases the electron collection efficiency of DSSC, subsequently increasing the power conversion efficiency by 116%. This work also designs a low-cost external lightguide (EL), which is disposed on the exterior of photoelectrode of DSSC, to direct light towards the dye-covered nanoporous TiO2 film (D-NTF) of the photoelectrode. Incorporating EL can increase the light harvesting efficiency from the exterior of the cell, thus enhancing the photovoltaic performance of DSSC. Furthermore, in addition to increasing the light harvesting efficiency by 30.69%, the proposed EL increases the photocurrent density by 38.12% and power conversion efficiency by 25.09%.
5

Steigerung der Effizienz und Leuchtdichtehomogenität von organischen Leuchtdioden mittels Druck- und Laserprozessen

Philipp, André 03 June 2019 (has links)
Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von Technologien und Prozessen, welche die Marktakzeptanz organischer Leuchtdioden (OLED) durch Steigerung der Effizienz und Leuchtdichtehomogenität erhöhen. Dazu werden die Fertigungskosten durch neuartige Herstellungsverfahren reduziert und die Realisierung von effizienten, großflächigen (> 300×300 mm2) und homogen leuchtenden OLED-Modulen in beliebiger Modulform ermöglicht. Um dies zu erreichen, wurden folgende drei Ansätze verfolgt: 1. Die Optimierung der Strukturierung dünner Schichten bei Substraten für die organische Elektronik unter Verwendung der Technologien Siebdruck und Laserablation. Es werden neuartige Druckpasten auf ihre Eigenschaften hin untersucht und deren Eignung für die Substratstrukturierung bei OLEDs mittels Testmodulen elektro-optisch charakterisiert. Weiterhin steht die Verringerung der parasitären Leckströme durch einen optimierten Laserablationsprozess zur Grundelektrodenstrukturierung und einer Variation der Dicke der Löchertransportschicht im Fokus. 2. Die Realisierung einer schattenmasken- und photolithografiefreien seriellen elektrischen Verschaltung von mehreren kleinen OLED-Segmenten zu einem großen Gesamtmodul. Dazu werden ein Verfahren für die Erzeugung einer elektrischen Verbindung zwischen Top- und Grundelektrode sowie zwei hochinnovative Verfahren zur Separation einer vollflächig abgeschiedenen Topelektrode entwickelt und auf ihre Eignung hin validiert. 3. Die Verbesserung der Lichtauskopplung aus OLED-Modulen mittels einer modulinternen Streuschicht. Es werden fünf unterschiedliche Streupartikelarten und zwei Matrixmaterialien untersucht und deren Auswirkungen auf die Lichtauskopplung anhand von OLED-Testmodulen charakterisiert. Die entwickelten Verfahren und Prozessen basieren auf den Technologien Siebdruck und Laserablation, sind explizit für die Fertigung flexibler Module auf Basis von Trägermaterialien wie Dünnglas oder Polymerfolien sowie einem Rolle-zu-Rolle-Herstellungsverfahren geeignet und können direkt in eine großserientechnische Herstellung von OLED-Modulen überführt werden. / The focus of this work is upon the development of technologies and processes to increase the efficiency and brightness homogeneity of organic light-emitting diodes (OLEDs) in order to improve their market acceptance. Additionally, manufacturing costs will be reduced by adopting the new processes and it will be shown that the production of efficient, large-area (up to 300 × 300 mm2) and uniformly bright OLED modules of an arbitrary shape is possible. To achieve this, three approaches were followed: 1. The optimization of the structuring of thin layers on substrates for organic electronics using screen printing and laser ablation. To achieve this, the properties of novel printing pastes were determined, and their suitability for structuring substrates was assessed using results from the electro-optical characterization of test modules. Furthermore, the parasitic leakage current was minimized by optimizing the laser ablation process used for the structuring of the bottom electrode, together with the thickness of the hole transport layer. 2. The electrical connection in series of several small OLED segments to make a larger module without the need for shadow masks or photolithographic processes was studied. This included the development of a technique to connect the top and bottom electrodes, as well as two highly innovative methods to produce a completely separated top electrode using structuring by laser ablation. The suitability of these methods for OLED production was confirmed. 3. A scattering layer within the modules was developed to improve the light outcoupling. Five types of scattering particle in two different matrix materials were examined, and the effects of the resulting scattering layer on the outcoupling from an OLED test module were characterized. The newly developed processes make use of screen printing and laser ablation and are thus well suited to the production of flexible OLED modules using support materials such as thin glass or polymer foils with roll-to-roll processing. Accordingly, such technologies could readily be transferred to the large volume production of OLED modules.

Page generated in 0.0796 seconds