• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 278
  • 99
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 386
  • 188
  • 155
  • 137
  • 137
  • 132
  • 132
  • 131
  • 128
  • 109
  • 104
  • 96
  • 72
  • 69
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

MATERIALI E AMBIENTE - Valorizzazione di sottoprodotti industriali come materie prime secondarie nella produzione di materiali per l'edilizia

Rocchi, Simona <1979> 24 May 2010 (has links)
No description available.
92

Modifica, caratterizzazione e applicazioni di tecnopolimeri

Totaro, Grazia <1976> 24 May 2010 (has links)
No description available.
93

Sintesi e caratterizzazione di nanopolveri composite allumina-zirconia / Synthesis and characterization of alumina-zirconia nanopowders

Prete, Francesca <1980> 24 May 2010 (has links)
Il presente lavoro di tesi riguarda la sintesi di nanopolveri allumina-zirconia, seguendo tre differenti metodologie (sintesi per coprecipitazione, sintesi con il metodo dei citrati, sintesi idrotermale assistita da microonde) e il trattamento termico (calcinazione) delle polveri ottenute, mediante tecniche di riscaldamento convenzionali ed alternative (microonde). Lo scopo del lavoro è consistito nell’individuare, tra le tecniche esaminate, quella più idonea e conveniente, per la preparazione di nanopolveri cristalline 95 mol% Al2O3 – 5 mol% ZrO2 e nell’esaminare gli effetti che la calcinazione condotta con le microonde, ha sulle caratteristiche finali delle polveri, rispetto ai trattamenti termici convenzionali. I risultati ottenuti al termine del lavoro hanno evidenziato che, tra le tecniche di sintesi esaminate, la sintesi idrotermale assistita da microonde, risulta il metodo più indicato e che, il trattamento termico eseguito con le microonde, risulta di gran lunga vantaggioso rispetto a quello convenzionale. La sintesi idrotermale assistita da microonde consente di ottenere polveri nano cristalline poco agglomerate, che possono essere facilmente disaggregate e con caratteristiche microstrutturali del tutto peculiari. L’utilizzo di tale tecnica permette, già dopo la sintesi a 200°C/2ore, di avere ossido di zirconio, mentre per ottenere gli ossidi di alluminio, è sufficiente un ulteriore trattamento termico a basse temperature e di breve durata (400°C/ 5 min). Si è osservato, inoltre, che il trattamento termico condotto con le microonde comporta la formazione delle fasi cristalline desiderate (ossidi di alluminio e zirconio), impiegando (come per la sintesi) tempi e temperature significativamente ridotti. L’esposizione delle polveri per tempi ridotti e a temperature più basse consente di evitare la formazione di aggregati duri nelle nanopolveri finali e di contrastare il manifestarsi di fenomeni di accrescimento di grani, preservando così la “nanostruttura” delle polveri e le sue caratteristiche proprietà. / This thesis reports the synthesis of alumina-zirconia nanopowders, by means of three different routes (cooprecipitation, citrate route, microwave hydrothermal synthesis), followed by thermal treatment (calcination), performed by using conventional (muffle furnace) and alternative method (microwaves furnace). The aim of this work is to identify, over the experimented routes, the most convenient and suitable one, for the production of 95 mol% Al2O3 – 5 mol% ZrO2 nanocrystalline powders and to examine the effects, on powder features, of the microwave thermal treatment respect to conventional heating. The obtained results have shown that, among the tested routes, microwave hydrothermal synthesis is the most advantageous method, and that microwave hydrothermal heating is favourable respect to conventional treatment in the calcination step. It has been demonstrated that microwave hydrothermal synthesis allows to obtain nanocrystalline powders with unique characteristics, that can be easily grinded because of the absence of hard agglomerates. The so obtained powders are composed, since after the synthesis stage (200°C/2 hrs), of zirconium oxide and the crystallization of aluminium oxides was reached by using low temperature and short time (400°C/5 min) of calcination. Furthermore, the thermal treatment, performed by using microwave source, allows the formation of the desired crystalline phases at significant lower temperature and with reduced processing time (as observed for the synthesis) respect to conventional thermal treatment. The possibility to undergo, for the calcination steps, the powders to lower temperature and reduced time avoid the formation of hard aggregates and contrast grain coarsening, preserving the nanostructure of the powders and their innovative properties.
94

Studio di metodi di preparazione e caratterizzazione di nanostrutture per la funzionalizzazione di materiali ceramici

Chiva-Flor, Carla <1978> 25 May 2011 (has links)
This thesis was carried out in the context of a co-tutoring program between Centro Ceramico Bologna (Italy) and Instituto di Tecnologia Ceramica, Castellón de la Plana (Spain). The subject of the thesis is the synthesis of silver nanoparticles and at their likely decorative application in the productive process of porcelain ceramic tiles. Silver nanoparticles were chosen as a case study, because metal nanoparticles are thermally stable, and they have non-linear optical properties when nano-structured, and therefore they develop saturated colours. The nanoparticles were synthesized by chemical reduction in aqueous solution, a method chosen because of its reduced working steps and energy costs. Besides such a synthesis method uses non-expensive and non-toxic raw material. By adopting this synthesis technique, it was also possible to control the dimension and the final shape of the nanoparticles. Several syntheses were carried out during the research work, modifying the molecular weight of the reducing agent and/or the firing temperature, in order to evaluate the influence such parameters have on the Ag-nanoparticles formation. The syntheses were monitored with the use of UV-Vis spectroscopy and the average dimension as well as the morphology of the nanoparticles was analysed by SEM. From the spectroscopic data obtained from each synthesis, a kinetic study was completed, relating the progress of the reaction to the two variables (ie temperature and molecular weight of the reducing agent). The aim was finding equations that allow the establishing of a relationship between the operating conditions during the synthesis and the characteristics of the final product. The next step was finding the best method of synthesis for the decorative application. For such a purpose the amount of nanoparticles, their average particle size, the shape and the agglomeration are considered. An aqueous suspension containing the nanoparticles is then sprayed over the fired ceramic tiles and they are subsequently thermally treated in conditions similar to the industrial one. The colorimetric parameters of the obtained ceramic tiles were studied and the method proved successful, giving the ceramic tiles stable and intense colours.
95

Caratterizzazione e studio dei meccanismi di azione del silicato di etile per il consolidamento e la protezione delle superfici architettoniche antiche e moderne

Pigino, Barbara <1981> 25 May 2011 (has links)
No description available.
96

Environmental weathering of natural and artificial stones used in historical architecture: influence of microstructure and new restoration methods

Sassoni, Enrico <1982> 25 May 2011 (has links)
For some study cases (the Cathedral of Modena, Italy, XII-XIV century; the Ducal Palace in Mantua, Italy, XVI century; the church of San Francesco in Fano, Italy, XIV-XIX century), considered as representative of the use of natural and artificial stones in historical architecture, the complex interaction between environ-mental aggressiveness, materials’ microstructural characteristics and degradation was investigated. From the results of such analyses, it was found that materials microstructure plays a fundamental role in the actual extent to which weathering mechanisms affect natural and artificial stones. Consequently, the need of taking into account the important role of material microstructure, when evaluating the environmental aggressiveness to natural and artificial stones, was highlighted. Therefore, a possible quantification of the role of microstructure on the resistance to environmental attack was investigated. By exposing stone samples, with significantly different microstructural features, to slightly acidic aqueous solutions, simulating clean and acid rain, a good correlation between weight losses and the product of carbonate content and specific surface area (defined as the “vulnerable specific surface area”) was found. Alongside the evaluation of stone vulnerability, the development of a new consolidant for weathered carbonate stones was undertaken. The use of hydroxya-patite, formed by reacting the calcite of the stone with an aqueous solution of di-ammonium hydrogen phosphate, was found to be a promising consolidating tech-nique for carbonates stones. Indeed, significant increases in the mechanical prop-erties can be achieved after the treatment, which has the advantage of simply con-sisting in a non-hazardous aqueous solution, able to penetrate deeply into the stone (> 2 cm) and bring significant strengthening after just 2 days of reaction. Furthermore, the stone sorptivity is not eliminated after treatment, so that water and water vapor exchanges between the stone and the environment are not com-pletely blocked.
97

Materiali compositi e ibridi con predefinite proprietà funzionali. Sviluppo ed applicazioni, con particolare riguardo alla funzionalizzazione superficiale di materiali ceramici.

Acquasanta, Francesco <1982> 25 May 2011 (has links)
No description available.
98

The incomplete ionization of substitutional dopants in Silicon Carbide

Scaburri, Raffaele <1974> 25 May 2011 (has links)
This thesis analyzes theoretically and computationally the phenomenon of partial ionization of the substitutional dopants in Silicon Carbide at thermal equilibrium. It is based on the solution of the charge neutrality equation and takes into account the following phenomena: several energy levels in the bandgap; Fermi-Dirac statistics for free carriers; screening effects on the dopant ionization energies; the formation of impurity bands. A self-consistent model and a corresponding simulation software have been realized. A preliminary comparison of our calculations with existing experimental results is carried out.
99

On symbolic representations of music

Cella, Carmine Emanuele <1976> 08 July 2011 (has links)
No description available.
100

Sustainable inorganic Binders and Their Applications in Building Engineering: A Green Alternative to Ordinary Portland Cement

Natali Murri, Annalisa <1982> 25 May 2012 (has links)
In the last decades, the building materials and construction industry has been contributing to a great extent to generate a high impact on our environment. As it has been considered one of the key areas in which to operate to significantly reduce our footprint on environment, there has been widespread belief that particular attention now has to be paid and specific measures have to be taken to limit the use of non-renewable resources.The aim of this thesis is therefore to study and evaluate sustainable alternatives to commonly used building materials, mainly based on ordinary Portland Cement, and find a supportable path to reduce CO2 emissions and promote the re-use of waste materials. More specifically, this research explores different solutions for replacing cementitious binders in distinct application fields, particularly where special and more restricting requirements are needed, such as restoration and conservation of architectural heritage. Emphasis was thus placed on aspects and implications more closely related to the concept of non-invasivity and environmental sustainability. A first part of the research was addressed to the study and development of sustainable inorganic matrices, based on lime putty, for the pre-impregnation and on-site binding of continuous carbon fiber fabrics for structural rehabilitation and heritage restoration. Moreover, with the aim to further limit the exploitation of non-renewable resources, the synthesis of chemically activated silico-aluminate materials, as metakaolin, ladle slag or fly ash, was thus successfully achieved. New sustainable binders were hence proposed as novel building materials, suitable to be used as primary component for construction and repair mortars, as bulk materials in high-temperature applications or as matrices for high-toughness fiber reinforced composites.

Page generated in 0.0601 seconds