Spelling suggestions: "subject:"blindage d'opérations"" "subject:"scindée d'opérations""
1 |
Propriétés algébriques et homotopiques des opérades sur une algèbre de HopfBellier, Olivia 16 October 2012 (has links) (PDF)
Dans cette thèse, nous démontrons de nouvelles propriétés algébriques et homotpiques des opérades : probème du scindage des opérations et dualité de Koszul sur une algbre de Hopf. Dans une première partie, nous fournissons une construction opéradique qui donne un cadre général répondant au problème du scindage des opérations définissant des structures algébriques. Nous montrons que cette construction est équivalente au produit noir de Manin et qu'elle est reliée aux opérateurs de Rota-Baxter. Nous obtenons ainsi une méthode plus efficace pour calculer des produits noirs de Manin, illustrée par plusieurs exemples. Ceci nous permet de décrire une structure algébrique canonique sur l'espace des matrices carrées à coefficients dans une algèbre sur un certain type d'opérades. Dans une seconde partie, nous étendons la dualité de Koszul classique de opérades aux catégories de modules sur une algèbre de Hopf. Ceci nous permet d'obtenir une nouvelle version optimale du théorème de transfert homotopique. Dans ce cas, nous pouvons décrire la structure d'algèbre de Batalin-Vilkovisky, par exemple, transférée à travers une équivalence d'homotopie lorsqu'il y a compatibilité entre les données homotopique et algébrique.
|
Page generated in 0.1084 seconds