1 |
Fabrication of Polystyrene Core-Silica Shell Nanoparticles for Scintillation Proximity Assay (SPA) BiosensorsNoviana, Eka January 2015 (has links)
The development of analytical tools for investigating biological pathways on the molecular level has provided insight into diseases and disorders. However, many biological analytes such as glucose and inositol phosphate(s) lack the optical or electrochemical properties needed for detection, making molecular sensing challenging. Scintillation proximity assay (SPA) does not require analytes to possess such properties. SPA uses radioisotopes to monitor the binding of analytes to SPA beads. The beads contain scintillants that emit light when the radiolabeled analytes are in close proximity. This technique is rapid, sensitive and separation-free. Conventional SPA beads, however, are large relative to the cells and made of hydrophobic organic polymers that tend to aggregate or inorganic crystals that sediment rapidly in aqueous solution, thus limiting SPA applications. To overcome these problems, polystyrene core-silica shell nanoparticles (NPs) doped with pTP and dimethyl POPOP were fabricated to produce scintillation NPs that emit photons in the blue region of visible light. The developed scintillation particles are approximately 250 nm in diameter (i.e. 200 nm of core diameter and 10-30 nm of shell thickness), responsive to β-decay from tritium (³H) and have sufficient stability in the aqueous media. DNA hybridization-based SPA was performed to determine whether the scintillation NPs could be utilized for SPA applications. A 30-mer oligonucleotide was immobilized on the polystyrene core-silica shell NPs to give approximately 7.6 x 10³ oligonucleotide molecules per NP and ³H-labeled complementary strand was annealed to the immobilized strand. At the saturation point, increases in scintillation signal due to oligonucleotide binding to the NPs were about 9 fold compared to the control experiments in which no specific binding occurred, demonstrating that the scintillation NPs can be utilized for SPA. Along with the improved physical properties including smaller size and better stability in the aqueous system, the developed scintillation NPs could be potentially useful as biosensors in cellular studies.
|
Page generated in 0.1557 seconds