• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of scratch test methodology and characterization of surface damage of polypropylene

Wong, Min Hao 15 November 2004 (has links)
A new scratch test methodology is proposed. The new test methodology is developed based on the principles of materials science and solid mechanics, which include the consideration of material parameters, use of microscopy for image analysis and the finite element method (FEM). The consistency and reproducibility of test results are shown using a new scratch test device on two sets of neat and talcfilled polypropylene (PP) systems. Three different test conditions, i.e., linear load increase under constant rate, constant load under constant rate, and linear rate increase under constant load, have been conducted to determine the most effective, informative test conditions for evaluation of scratch resistance of polymers. Experimental observations and FEM results show a good qualitative correlation. The unique advantages of the new scratch test method for evaluating scratch resistance of polymers are discussed. A systematic study of surface damage effected by a progressive scratching load is performed on model polypropylene (PP) systems. Mar-scratch and stress -whitening transitions can be readily observed, and the corresponding critical loads determined. Distinctive scratch hardnesses and surface damage features are found for different material systems. Visibility of scratched surface is quantified using gray level analysis via a flatbed scanner and a commercial image analysis tool. It is found that the onset of scratch visibility can be determined accurately and reproducibly using the custom -built scratcher under progressive loading condition. Talc particles are found to be responsible for the increased light scattering, leading to greatly increased visibility. The observed scratch visibility is also found to be related to the measured frictional force profiles. Approaches for producing scratch resistant PP are discussed.

Page generated in 0.0553 seconds