1 |
Effect of crystal size on diffraction contrast of a screw dislocationBezewada, Rohit 15 November 2013 (has links)
As materials get reduced in size down to the nanoscale it becomes more complex to characterize them. In this regard transmission electron microscopy has been extensively used to better characterize and understand the mechanical behavior of materials at the nanoscale, although there are various contrast mechanisms that can be used in a TEM micrograph. Focusing in particular on diffraction contrast, we know that dislocation lines are interpreted based on how the displacement field of a dislocation in an infinite crystal influences contrast. However, from a practical standpoint most of the samples that are used in microscopy are of a finite size. Thus, it is important to understand the change in contrast of a screw dislocation by taking into account the effect of crystal size. A MATLAB program has been written to simulate contrast in the TEM of a screw dislocation, taking into account the modified displacement fields for finite size crystals. The effect of reducing crystal size and the effect of microscopic parameters, such as the deviation parameter and g.b diffraction conditions have been also analyzed. / text
|
2 |
Characterization and Modeling of Creep Mechanisms in Zircaloy-4Morrow, Benjamin M. 02 September 2011 (has links)
No description available.
|
3 |
Modélisation ab-initio des dislocations dans les métaux de transition cubiques centrés / Ab initio modelling of screw dislocations in body-centered cubic transition metalsDezerald, Lucile 01 October 2014 (has links)
Nous avons réalisé des calculs de structure électronique ab initio, basés sur la théorie de lafonctionnelle de la densité (DFT), pour étudier les propriétés des dislocations vis h111i dansles métaux de transition cubiques centrés (V, Nb, Ta, Mo, W et Fe). Dans tous ces éléments,le coeur facile non-dégénéré est la configuration d’énergie minimale et la configuration de coeurdissociée a une énergie très élevée, comparable ou plus élevée que celle du coeur difficile, encontradiction avec les prédictions des potentiels interatomiques. Nous avons mis en évidence destendances de groupe marquées sur l’énergie de coeur de la dislocation facile, reliées à la positiondu niveau de Fermi par rapport au minimum du pseudo-gap de la densité d’états électroniques.Notre travail fait aussi apparaitre un comportement atypique du fer, avec une énergie relativedu coeur difficile basse, proche de celle du point col entre deux coeurs faciles, conduisant à unpotentiel de Peierls plat autour de la configuration difficile, contrairement aux autres éléments.A partir de ces calculs DFT, nous avons construit le paysage énergétique à deux dimensionsdans le plan {111} (potentiel de Peierls) et nous avons étudié plusieurs propriétés relativesau glissement des dislocations, et en particulier l’énergie de formation de la paire de décrochementset la dépendance de la contrainte de Peierls en fonction de l’orientation cristalline.Nous proposons une modification simple de la loi de Schmid, qui prend en compte la trajectoirenon rectiligne de la dislocation et qui permet d’expliquer qualitativement pourquoi l’asymétriemaclage/antimaclage est moins marquée dans Fe que dans les autres métaux cubiques centrés. / We performed electronic structure ab initio calculations based on density functional theory(DFT) to study the h111i screw dislocation properties in body-centered cubic transition metals(V, Nb, Ta, Mo, W and Fe). In all investigated elements, the nondegenerate easy coreis the minimum energy configuration and the split core configuration has a high energy nearor above that of the hard core, contrary to interatomic potential predictions. A strong groupdependence of the core energy of the easy dislocation is also evidenced, related to the positionof the Fermi level with respect to the minimum of the pseudogap of the electronic density ofstates. Our work also reveals an atypical behavior in Fe, with a low relative energy at the hardcore position, close to that of the saddle configuration between easy cores, resulting in a flatPeierls potential around the hard core configuration, at variance with other elements. Fromthese DFT calculations, the two-dimensional energetic landscape in the {111} plane (Peierlspotential) is constructed and we investigated several properties of dislocation glide and in particular,the kink-pair formation enthalpy, as well as the dependence of the Peierls stress oncrystal orientation. We proposed a simple modification to the Schmid law that takes accountof the non-straight trajectory of the dislocation and that qualitatively explains why the twinning/antitwinning asymmetry is less pronounced in Fe than in other body-centered cubic metals.
|
4 |
Nanostructured Materials for Energy ApplicationsLi, Yanguang 08 September 2010 (has links)
No description available.
|
Page generated in 0.1082 seconds