1 |
Propriedades de dinâmica hamiltoniana em níveis de energia convexos de R4 / Properties of the hamiltonian dynamics in convex energy levels of R4Alves, Marcelo Ribeiro de Resende 25 May 2011 (has links)
A existência de seções globais para uxos é de central importância na teoria de sistemas dinâmicos, pois uma seção global simplica o estudo da dinâmica de um uxo reduzindo-o ao estudo da dinâmica de um difeomorsmo. Apresentamos detalhadamente a construção feita Hofer, Zehnder e Wysocki (em \'\'The dynamics on a strictly convex energy surface in R4\'\') de uma seção global para o uxo Hamiltoniano restrito a um nível de energia convexo em R4 . Uma importante consequência da existência dessa seção global é que o uxo Hamiltoniano restrito a um nível de energia convexo em R4 tem 2 ou innitas órbitas periódicas. Essa construção utiliza-se da teoria de curvas pseudo-holomorfas em simplectizações de variedades de contato desenvolvida pelos mesmos autores. Os argumentos apresentados também dão uma nova prova da Conjectura de Weinstein para formas de contato tight em S3 . / The existence of global surfaces of section to ows is of central importance in the theory of dynamical systems, as a global surface of section simplies the study of the dynamics of a ow reducing it to the study of the dynamics of a dieomorphism. We present in detail the construction due to Hofer, Wysocki and Zehnder (in \'\'The dynamics on a strictly convex energy surface in R4\'\') of a global surface of section for the Hamiltonian ow restricted to a convex energy level in R4 . An important consequence of the existence of the global surface of section is that the Hamiltonian ow restricted to a convex energy level in R4 has either 2 or innitely many periodic orbits. This construction makes use of the theory of pseudo-holomorphic curves in symplectizations of contact manifolds developed by the same authors. The arguments also give a new proof of Weinstein conjecture for tight contact forms in S3 .
|
2 |
Propriedades de dinâmica hamiltoniana em níveis de energia convexos de R4 / Properties of the hamiltonian dynamics in convex energy levels of R4Marcelo Ribeiro de Resende Alves 25 May 2011 (has links)
A existência de seções globais para uxos é de central importância na teoria de sistemas dinâmicos, pois uma seção global simplica o estudo da dinâmica de um uxo reduzindo-o ao estudo da dinâmica de um difeomorsmo. Apresentamos detalhadamente a construção feita Hofer, Zehnder e Wysocki (em \'\'The dynamics on a strictly convex energy surface in R4\'\') de uma seção global para o uxo Hamiltoniano restrito a um nível de energia convexo em R4 . Uma importante consequência da existência dessa seção global é que o uxo Hamiltoniano restrito a um nível de energia convexo em R4 tem 2 ou innitas órbitas periódicas. Essa construção utiliza-se da teoria de curvas pseudo-holomorfas em simplectizações de variedades de contato desenvolvida pelos mesmos autores. Os argumentos apresentados também dão uma nova prova da Conjectura de Weinstein para formas de contato tight em S3 . / The existence of global surfaces of section to ows is of central importance in the theory of dynamical systems, as a global surface of section simplies the study of the dynamics of a ow reducing it to the study of the dynamics of a dieomorphism. We present in detail the construction due to Hofer, Wysocki and Zehnder (in \'\'The dynamics on a strictly convex energy surface in R4\'\') of a global surface of section for the Hamiltonian ow restricted to a convex energy level in R4 . An important consequence of the existence of the global surface of section is that the Hamiltonian ow restricted to a convex energy level in R4 has either 2 or innitely many periodic orbits. This construction makes use of the theory of pseudo-holomorphic curves in symplectizations of contact manifolds developed by the same authors. The arguments also give a new proof of Weinstein conjecture for tight contact forms in S3 .
|
3 |
Seções globais para fluxos de Reeb dinamicamente convexos em $L(p, 1)$ e folheação $3-2^3$ no Hamiltoniano de Hénon-Heiles / Global surfaces of section for dynamically convex Reeb flows on $L(p, 1)$ and $3-2^3$ foliation in the Hénon-Heiles HamiltonianSchneider, Alexsandro 15 December 2017 (has links)
Neste trabalho, mostramos que fluxos de Reeb dinamicamente convexos em um espaço lenticular $L(p, 1)$, $p>1$, admite uma órbita periódica de Reeb especial $P$ que é o binding de uma decomposição em livro aberto racional, com páginas tipo-disco tal que cada página é uma seção global. O índice de Conley-Zehnder da $p$-ésima iterada de $P$ é $3$. Como corolário, o fluxo de Reeb possui duas ou infinitas órbitas periódicas. Este resultado aplica-se ao Hamiltoniano de Hénon-Heiles, cujo fluxo restrito a energia baixa possui $Z_3$-simetria e define um fluxo de Reeb em $L(3, 1)$. Devido a $Z_4$-simetria aplicamos nosso resultado ao problema lunar de Hill regularizado. Na segunda parte deste trabalho investigamos a existência de uma folheação $3-2^3$ em níveis de energia no sistema Hamiltoniano de Hénon-Heiles, para energia logo acima da crítica. Provamos que certa região de interesse é uma hipersuperfície de contato. Provamos também que o fluxo de Reeb possui uma órbita periódica $Z_3$ simétrica, cujo índice de Conley-Zehnder é $3$ e possui número de auto-enlaçamento $-1$. / We show that a dynamically convex Reeb flow on a lens space $L(p, 1)$, $p>1$ admits a special closed Reeb orbit $P$ which is the binding of a rational open book decomposition with disk-like pages so that each page is a global surface of section. The Conley-Zehnder index of the $p$-th iterate of $P$ is $3$. As a corollary, the Reeb flow has $2$ or infinitely many closed Reeb orbits. This result applies to the Hénon-Heiles Hamiltonian whose flow restricted to low energy levels has $Z_3$-symmetry and descends to $L(3,1)$. Due to a $Z_4$-symmetry we also apply our results to Hill\'s lunar problem. In the second part of this work we investigate the existence of a $3-2^3$ foliation on energy levels of the Hénon-Heiles Hamiltonian, for energies above the critical one. We show that some region is of contact-type and the Reeb flow has a $Z_3$-symmetric periodic orbit, whose Conley-Zehnder is $3$ and has self-linking number $-1$.
|
4 |
Seções globais para fluxos de Reeb dinamicamente convexos em $L(p, 1)$ e folheação $3-2^3$ no Hamiltoniano de Hénon-Heiles / Global surfaces of section for dynamically convex Reeb flows on $L(p, 1)$ and $3-2^3$ foliation in the Hénon-Heiles HamiltonianAlexsandro Schneider 15 December 2017 (has links)
Neste trabalho, mostramos que fluxos de Reeb dinamicamente convexos em um espaço lenticular $L(p, 1)$, $p>1$, admite uma órbita periódica de Reeb especial $P$ que é o binding de uma decomposição em livro aberto racional, com páginas tipo-disco tal que cada página é uma seção global. O índice de Conley-Zehnder da $p$-ésima iterada de $P$ é $3$. Como corolário, o fluxo de Reeb possui duas ou infinitas órbitas periódicas. Este resultado aplica-se ao Hamiltoniano de Hénon-Heiles, cujo fluxo restrito a energia baixa possui $Z_3$-simetria e define um fluxo de Reeb em $L(3, 1)$. Devido a $Z_4$-simetria aplicamos nosso resultado ao problema lunar de Hill regularizado. Na segunda parte deste trabalho investigamos a existência de uma folheação $3-2^3$ em níveis de energia no sistema Hamiltoniano de Hénon-Heiles, para energia logo acima da crítica. Provamos que certa região de interesse é uma hipersuperfície de contato. Provamos também que o fluxo de Reeb possui uma órbita periódica $Z_3$ simétrica, cujo índice de Conley-Zehnder é $3$ e possui número de auto-enlaçamento $-1$. / We show that a dynamically convex Reeb flow on a lens space $L(p, 1)$, $p>1$ admits a special closed Reeb orbit $P$ which is the binding of a rational open book decomposition with disk-like pages so that each page is a global surface of section. The Conley-Zehnder index of the $p$-th iterate of $P$ is $3$. As a corollary, the Reeb flow has $2$ or infinitely many closed Reeb orbits. This result applies to the Hénon-Heiles Hamiltonian whose flow restricted to low energy levels has $Z_3$-symmetry and descends to $L(3,1)$. Due to a $Z_4$-symmetry we also apply our results to Hill\'s lunar problem. In the second part of this work we investigate the existence of a $3-2^3$ foliation on energy levels of the Hénon-Heiles Hamiltonian, for energies above the critical one. We show that some region is of contact-type and the Reeb flow has a $Z_3$-symmetric periodic orbit, whose Conley-Zehnder is $3$ and has self-linking number $-1$.
|
Page generated in 0.0469 seconds