• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving Seasonal Factor Estimates for Adjustment of Annual Average Daily Traffic

Yang, Shanshan 13 July 2012 (has links)
Traffic volume data are input to many transportation analyses including planning, roadway design, pavement design, air quality, roadway maintenance, funding allocation, etc. Annual Average Daily Traffic (AADT) is one of the most often used measures of traffic volume. Acquiring the actual AADT data requires the collection of traffic counts continuously throughout a year, which is expensive, thus, can only be conducted at a very limited number of locations. Typically, AADTs are estimated by applying seasonal factors (SFs) to short-term counts collected at portable traffic monitoring sites (PTMSs). Statewide in Florida, the Florida Department of Transportation (FDOT) operates about 300 permanent traffic monitoring sites (TTMSs) to collect traffic counts at these sites continuously. TTMSs are first manually classified into different groups (known as seasonal factor categories) based on both engineering judgment and similarities in the traffic and roadway characteristics. A seasonal factor category is then assigned to each PTMS according to the site’s functional classification and geographical location. The SFs of the assigned category are then used to adjust traffic counts collected at PTMSs to estimate the final AADTs. This dissertation research aims to develop a more objective and data-driven method to improve the accuracy of SFs for adjusting PTMSs. A statewide investigation was first conducted to identify potential influential factors that contribute to seasonal fluctuations in traffic volumes in both urban and rural areas in Florida. The influential factors considered include roadway functional classification, demographic, socioeconomic, land use, etc. Based on these factors, a methodology was developed for assigning seasonal factors from one or more TTMSs to each PTMS. The assigned seasonal factors were validated with data from existing TTMSs. The results show that the average errors of the estimated seasonal factors are, on average, about 4 percent. Nearly 95 percent of the estimated monthly SFs contain errors of no more than 10 percent. It was concluded that the method could be applied to improve the accuracy in AADT estimation for both urban and rural areas in Florida.
2

Distribution pattern of free living nematode communities in the eight Mekong estuaries by seasonal factor / Sự phân bố của quần xã tuyến trùng sống tự do ở 8 cửa sông Mekong theo mùa

Ngo, Xuan Quang, Nguyen, Ngoc Chau, Nguyen, Dinh Tu, Pham, Van Lam, Vanreusel, Ann 14 November 2013 (has links) (PDF)
The temporal variation of nematode communities in eight mouth stations of the Mekong River system was investigated in order to compare the change between the dry and the wet season. The nematode data was analysed by multivariate techniques such as SIMPROF, MDS, ANOSIM and SIMPER in the software PRIMER v.6 – PERMANOVA. Our results showed that average dissimi-larity between seasons of the nematode communities in each station was high. Seasonal factor did not affect strongly their distribution pattern. Dominant genera Desmodora and Oncholaimellus usually occurred in the sand stations and Parodontophora and Halalaimus were characteristic for the silty group in both seasons. The spatial variations in this estuarine area have an influence that is larger than seasonal factors. / Sự phân bố theo thời gian của quần xã tuyến trùng sống tự do vùng cửa sông Mekong được nghiên cứu nhằm đánh giá sự khác biệt của chúng trong mùa mưa và mùa khô. Dữ liệu của tuyến trùng được xử lý và phân tích đa biến như SIMPROF, MDS, ANOSIM và SIMPER bằng phần mềm PRIMER v.6 – PERMANOVA. Kết quả nghiên cứu cho thấy sự khác biệt theo mùa trong quần xã tuyến trùng tại mỗi điểm là khá lớn nhưng yếu tố mùa không ảnh hưởng gì tới mô hình phân bố của chúng. Một số giống ưu thế trong nền đáy cát như Desmodora and Oncholaimellus trong khi đó Parodontophora và Halalaimus thích nghi nền bùn sét phù sa vẫn hiễn diện trong cả 2 mùa. Kết quả nghiên cứu cũng cho thấy sự biến động trong không gian ở đây lớn hơn sự biến động về mùa vụ.
3

Distribution pattern of free living nematode communities in the eight Mekong estuaries by seasonal factor: Research article

Ngo, Xuan Quang, Nguyen, Ngoc Chau, Nguyen, Dinh Tu, Pham, Van Lam, Vanreusel, Ann 14 November 2013 (has links)
The temporal variation of nematode communities in eight mouth stations of the Mekong River system was investigated in order to compare the change between the dry and the wet season. The nematode data was analysed by multivariate techniques such as SIMPROF, MDS, ANOSIM and SIMPER in the software PRIMER v.6 – PERMANOVA. Our results showed that average dissimi-larity between seasons of the nematode communities in each station was high. Seasonal factor did not affect strongly their distribution pattern. Dominant genera Desmodora and Oncholaimellus usually occurred in the sand stations and Parodontophora and Halalaimus were characteristic for the silty group in both seasons. The spatial variations in this estuarine area have an influence that is larger than seasonal factors. / Sự phân bố theo thời gian của quần xã tuyến trùng sống tự do vùng cửa sông Mekong được nghiên cứu nhằm đánh giá sự khác biệt của chúng trong mùa mưa và mùa khô. Dữ liệu của tuyến trùng được xử lý và phân tích đa biến như SIMPROF, MDS, ANOSIM và SIMPER bằng phần mềm PRIMER v.6 – PERMANOVA. Kết quả nghiên cứu cho thấy sự khác biệt theo mùa trong quần xã tuyến trùng tại mỗi điểm là khá lớn nhưng yếu tố mùa không ảnh hưởng gì tới mô hình phân bố của chúng. Một số giống ưu thế trong nền đáy cát như Desmodora and Oncholaimellus trong khi đó Parodontophora và Halalaimus thích nghi nền bùn sét phù sa vẫn hiễn diện trong cả 2 mùa. Kết quả nghiên cứu cũng cho thấy sự biến động trong không gian ở đây lớn hơn sự biến động về mùa vụ.

Page generated in 0.0386 seconds