• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diet quality and season affect physiology and energetic priorities of captive Steller sea lions during and after periods of nutritional stress

Jeanniard Du Dot, Tiphaine 05 1900 (has links)
The ability of animals to contend with unpredictable seasonal shifts in quality and quantity of prey has implications for the conservation of wildlife. Steller sea lions(Eumetopias jubatus) were subjected to different quantities and qualities of food to determine what physiological and endocrine responses would occur and whether they differed between season (summer and winter) or diet (high-lipid Pacific herring Clupeapallasi vs. low-lipid Walleye Pollock Theragra chalcogramma). Eight females were divided among two groups. One (Group H) were fed herring for 28 days (baseline), then received a reduced caloric intake for a subsequent 28 days (restriction) to induce a 15%loss of body mass. The second (Group P) were also fed herring during the baseline followed by a reduced isocaloric diet of pollock during the restriction. Both groups subsequently returned to their baseline intake of herring for a 28-day controlled re-feeding. The two groups of sea lions lost identical mass during restrictions independent of species eaten, but did differ in the type of internal energy reserve (protein vs. lipids) they predominantly used. Group H lost significantly more lipids and less lean mass than Group P in both seasons. In summer, Group H also increased activity levels and decreased thermoregulation capacity to optimize energy allocation. No such changes were observed for Group P whose capacity to adjust to the reduced caloric intake seemed to have been blocked by the pollock diet. During winter, the sea lions spared energy allocated to activity (especially Group H) and preserved thermoregulation capacity. Changes in body mass was negatively related to free cortisol and positively related to IGF-1 in winter, but only IGF-1 was related to changes in mass in summer when lean mass regulation seemed more important. Levels of IGF-1 were associated with changes in protein metabolism in both seasons for both groups, but changes in body condition were never explained by the measured metabolites or hormones. The capacity to compensate for mass loss was seasonally dependent with sea lions displaying compensatory growth (by restoring lipid stores) in winter but not in summer. Summer appears to be a more difficult season for sea lions to recover from mild nutritional stress. These physiological findings can be used to refine bioenergetic models needed for the conservation of Steller sea lion populations.
2

Diet quality and season affect physiology and energetic priorities of captive Steller sea lions during and after periods of nutritional stress

Jeanniard Du Dot, Tiphaine 05 1900 (has links)
The ability of animals to contend with unpredictable seasonal shifts in quality and quantity of prey has implications for the conservation of wildlife. Steller sea lions(Eumetopias jubatus) were subjected to different quantities and qualities of food to determine what physiological and endocrine responses would occur and whether they differed between season (summer and winter) or diet (high-lipid Pacific herring Clupeapallasi vs. low-lipid Walleye Pollock Theragra chalcogramma). Eight females were divided among two groups. One (Group H) were fed herring for 28 days (baseline), then received a reduced caloric intake for a subsequent 28 days (restriction) to induce a 15%loss of body mass. The second (Group P) were also fed herring during the baseline followed by a reduced isocaloric diet of pollock during the restriction. Both groups subsequently returned to their baseline intake of herring for a 28-day controlled re-feeding. The two groups of sea lions lost identical mass during restrictions independent of species eaten, but did differ in the type of internal energy reserve (protein vs. lipids) they predominantly used. Group H lost significantly more lipids and less lean mass than Group P in both seasons. In summer, Group H also increased activity levels and decreased thermoregulation capacity to optimize energy allocation. No such changes were observed for Group P whose capacity to adjust to the reduced caloric intake seemed to have been blocked by the pollock diet. During winter, the sea lions spared energy allocated to activity (especially Group H) and preserved thermoregulation capacity. Changes in body mass was negatively related to free cortisol and positively related to IGF-1 in winter, but only IGF-1 was related to changes in mass in summer when lean mass regulation seemed more important. Levels of IGF-1 were associated with changes in protein metabolism in both seasons for both groups, but changes in body condition were never explained by the measured metabolites or hormones. The capacity to compensate for mass loss was seasonally dependent with sea lions displaying compensatory growth (by restoring lipid stores) in winter but not in summer. Summer appears to be a more difficult season for sea lions to recover from mild nutritional stress. These physiological findings can be used to refine bioenergetic models needed for the conservation of Steller sea lion populations.
3

Diet quality and season affect physiology and energetic priorities of captive Steller sea lions during and after periods of nutritional stress

Jeanniard Du Dot, Tiphaine 05 1900 (has links)
The ability of animals to contend with unpredictable seasonal shifts in quality and quantity of prey has implications for the conservation of wildlife. Steller sea lions(Eumetopias jubatus) were subjected to different quantities and qualities of food to determine what physiological and endocrine responses would occur and whether they differed between season (summer and winter) or diet (high-lipid Pacific herring Clupeapallasi vs. low-lipid Walleye Pollock Theragra chalcogramma). Eight females were divided among two groups. One (Group H) were fed herring for 28 days (baseline), then received a reduced caloric intake for a subsequent 28 days (restriction) to induce a 15%loss of body mass. The second (Group P) were also fed herring during the baseline followed by a reduced isocaloric diet of pollock during the restriction. Both groups subsequently returned to their baseline intake of herring for a 28-day controlled re-feeding. The two groups of sea lions lost identical mass during restrictions independent of species eaten, but did differ in the type of internal energy reserve (protein vs. lipids) they predominantly used. Group H lost significantly more lipids and less lean mass than Group P in both seasons. In summer, Group H also increased activity levels and decreased thermoregulation capacity to optimize energy allocation. No such changes were observed for Group P whose capacity to adjust to the reduced caloric intake seemed to have been blocked by the pollock diet. During winter, the sea lions spared energy allocated to activity (especially Group H) and preserved thermoregulation capacity. Changes in body mass was negatively related to free cortisol and positively related to IGF-1 in winter, but only IGF-1 was related to changes in mass in summer when lean mass regulation seemed more important. Levels of IGF-1 were associated with changes in protein metabolism in both seasons for both groups, but changes in body condition were never explained by the measured metabolites or hormones. The capacity to compensate for mass loss was seasonally dependent with sea lions displaying compensatory growth (by restoring lipid stores) in winter but not in summer. Summer appears to be a more difficult season for sea lions to recover from mild nutritional stress. These physiological findings can be used to refine bioenergetic models needed for the conservation of Steller sea lion populations. / Science, Faculty of / Zoology, Department of / Graduate
4

Seasonal Feeding Behavior and Forage Selection by Goats in Cleared and Thinned Deciduous Woodlands in Northeast Brazil

Mesquita, Roberto Cesar Magalhaes 01 May 1985 (has links)
The seasonal feeding behavior, forage preferences and body weight responses of goats were studied under three densities of woodland (called caatinga), and under three stocking rates. The experiment was located in the semi-arid tropics of northeastern Brazil at 3 42' South latitude, and 40 21' West longitude at an elevation of 75 meters. Mean annual precipitation of the area is 832 mm. Removing the shrubs and trees increased yields of herbaceous only on partially-cleared sites. Goats gained body weight (kg BW/ha) during the wet season, with the cleared treatment showing the best body weight response per unit of land. However during the dry season, animals lost weight probably due the low quality and quantity of available forage. The botanical composition of goats' diets showed them to be mixed feeders, consuming grasses, forbs and browse in various combinations depending on the season and the array of forage species available. During the dry season standing hay from herbaceous species and regrowth of some woody evergreen species were the principal forages. Animals maintained body weight on this forage. However, leaf litter was an important component of goats' diets during the dry season, but was inadequate for weight maintenance. Goats i n all treatments spent the least time grazing during the wet season and the most time during the beginning of the dry season. They spent the most time lying ruminating during the dry season and the least time during the wet season. Forage quality was probably a limiting factor to effective animal response during the dry season. Goats exhibited dislike for rain and wet conditions. They grazed freely when the temperatures were high (35 to 39 C). However, periods of high temperature corresponded to periods of low relative humidity, perhaps moderating the discomfort factor of combined high temperatures and high humidity.

Page generated in 0.0988 seconds