• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dambos and discharge in central Zimbabwe

Bullock, A. January 1988 (has links)
No description available.
2

The role of seasonal wetlands in the ecology of the American alligator

Subalusky, Amanda Lee 15 May 2009 (has links)
The American alligator (Alligator mississippiensis) has been frequently studied in large reservoirs and coastal marshes. Large ontogenetic shifts in their diet and morphology have been linked with changes in habitat use, with adult males using deep, open water and juveniles and nesting females relying on vegetated marsh. In certain regions of the inland portion of the alligator’s range, these different aquatic habitats are represented by seasonal wetlands and riverine systems that are separated by a terrestrial matrix. Ontogenetic habitat shifts, therefore, would require overland movements between systems, which has important implications for conservation of the species. I tested several commonly used methods of surveying alligator populations to determine the most effective method of studying alligators in seasonal wetlands. I then used systematic trapping, nest surveys and radio telemetry to determine habitat use and overland movement rates by different sex and size classes. I found that seasonal wetlands provided nesting and nursery sites for these inland alligator populations, but that both juveniles undergoing an ontogenetic shift and nesting females move between the wetlands and riverine systems. Overland movements by alligators between the wetland and riverine habitats establish a level of functional connectivity between these aquatic ecosystems. I constructed a habitat suitability index of both the wetlands and the surrounding landscape to determine which patch and landscape characteristics were important to wetland use by alligators. I found that both descriptive wetland characteristics and the spatial relationships between wetlands were important predictors of alligator use. Overland movement was related to upland landuse as well as distance between aquatic habitats. Conserving a variety of wetland sizes and types within an intact upland matrix is critical to maintaining connectivity across the landscape. Furthermore, understanding how species may act as mobile links between ecosystems, particularly those with ontogenetic niche shifts, illustrates the importance of approaching conservation from a landscape perspective.
3

The role of seasonal wetlands in the ecology of the American alligator

Subalusky, Amanda Lee 15 May 2009 (has links)
The American alligator (Alligator mississippiensis) has been frequently studied in large reservoirs and coastal marshes. Large ontogenetic shifts in their diet and morphology have been linked with changes in habitat use, with adult males using deep, open water and juveniles and nesting females relying on vegetated marsh. In certain regions of the inland portion of the alligator’s range, these different aquatic habitats are represented by seasonal wetlands and riverine systems that are separated by a terrestrial matrix. Ontogenetic habitat shifts, therefore, would require overland movements between systems, which has important implications for conservation of the species. I tested several commonly used methods of surveying alligator populations to determine the most effective method of studying alligators in seasonal wetlands. I then used systematic trapping, nest surveys and radio telemetry to determine habitat use and overland movement rates by different sex and size classes. I found that seasonal wetlands provided nesting and nursery sites for these inland alligator populations, but that both juveniles undergoing an ontogenetic shift and nesting females move between the wetlands and riverine systems. Overland movements by alligators between the wetland and riverine habitats establish a level of functional connectivity between these aquatic ecosystems. I constructed a habitat suitability index of both the wetlands and the surrounding landscape to determine which patch and landscape characteristics were important to wetland use by alligators. I found that both descriptive wetland characteristics and the spatial relationships between wetlands were important predictors of alligator use. Overland movement was related to upland landuse as well as distance between aquatic habitats. Conserving a variety of wetland sizes and types within an intact upland matrix is critical to maintaining connectivity across the landscape. Furthermore, understanding how species may act as mobile links between ecosystems, particularly those with ontogenetic niche shifts, illustrates the importance of approaching conservation from a landscape perspective.
4

Vegetational and landscape level responses to water level fluctuations in Finnish, mid-boreal aapa mire – aro wetland environments

Laitinen, J. (Jarmo) 09 September 2008 (has links)
Abstract Gradient, which is largely considered to be related to water level in mires, is referred to as a microtopographic mud bottom to carpet to lawn to hummock level gradient or the hummock level to intermediate level (lawn) to flark level gradient. The relationship of this vegetation gradient to various physical water level characteristics was studied. The general classification used in the present summary paper divides the aro vegetation of the inland of Northern Ostrobothnia into two main groups: (a) treeless fen aro vegetation (Juncus supinus, Carex lasiocarpa, Rhynchospora fusca, Molinia caerulea) and (b) heath aro vegetation (Polytrichum commune). The first group (a) was divided into fen aro wetlands with an approximately10 cm peaty layer at most and into aro fens with a peat layer thicker than 10 cm. The treatment of the water level gradient was divided into three main groups. (1) The mean water level correlated with mire surface levels (microtopographic gradient) within mires with slight water level fluctuations and partly within mires with considerable water level fluctuations. (2) Three habitat groups could be distinguished on the basis of the range of water level fluctuation i.e. mires with slight water level fluctuations, mires with considerable water level fluctuations and the aro vegetation with extreme water level fluctuations. (3) The timing of water level fluctuations indicated that there are different types of patterns within aro wetlands, the seasonal pattern being mainly a response to yearly snow melt and the several-year-fluctuation pattern being related to the regional groundwater table fluctuation in mineral soils (heath forests). A link was suggested between the stability of the water regime and peat production in local aapa mire – aro wetland environments. From the point of view of peatland plants the direction of variation from a stable to an unstable water regime in aapa mire – aro wetland environments represents a transition towards more and more harsh ecological conditions, partly forming a gradient through natural disturbance. A qualitative functional model was provided for the mire – aro wetland systems of Northern Ostrobothnia. The model supposes differences in the characteristics of peat between two functional complexes within a mire system. Finally, the model for local mire – aro wetland systems was converted to a general from: diplotelmic (acrotelm) mires were divided into two subtypes (diplotelmic water stabilization mires, diplotelmic water fluctuation mires) and the relationship of those subtypes to percolation mires and seasonal wetlands was considered.

Page generated in 0.0942 seconds