• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Environmental and socioeconomic assessment of rice straw conversion to ethanol in Indonesia : The case of Bali

Samuel, Victor January 2013 (has links)
The vast rice production in some developing Asian countries like Indonesia raises expectation on poverty alleviation and energy diversification through second generation biofuel production from rice residues, specifically rice straw. This work attempts to estimate the potential environmental and socioeconomic benefits of rice straw-to-ethanol project in Indonesia. Literature research and interviews are performed to quantify several environmental and socioeconomic indicators that are considered as the major concerns inimplementing an energy project. Assuming all the technically available rice straw in Bali is used (~244-415 kilotonne/year), ethanol production may yield gasoline replacement, lifecycle GHG savings, GDP contribution, foreign exchange savings, and employment beneficiaries of 55-93 ML/year, 140-240 millionUSD/year, 19-32 kilotonne of CO2-equivalent/year, 100-180 million USD/year, and 2,200-3,700 persons, respectively. Sensitivity analyses are done for some parameters, showing that ethanol yield, total capital cost, feed-in-tariff for electricity, and imported crude oil price are the major factors affecting the viability of rice straw-to-ethanol project in Indonesia. / Harnessing agricultural feedstock and residues for bioethanol production - towards a sustainable biofuel strategy in Indonesia
2

Design and assessment of novel thermochemical plants for producing second and third generation biobutanol / Design of thermochemical plants for biobutanol production

Okoli, Chinedu January 2016 (has links)
The use of biofuels as an alternative to gasoline in the transportation sector is seen by policy makers as an important strategy to reduce global greenhouse gas emissions. Biobutanol is one such biofuel that is gathering increasing attention in the biofuel community, because of its preferable fuel qualities over bioethanol. However, despite increasing research into biobutanol production, the thermochemical route for biobutanol production has not been adequately studied in the peer-reviewed literature. In light of this motivation, this thesis considers the design, and economic and environmental assessment of thermochemical plants for producing second and third generation biobutanol. In addition, the potential for using process intensification technology such as dividing wall columns (DWC) in place of conventional distillation columns is also investigated as a way to improve thermochemical biobutanol plants. As a first step, a novel thermochemical plant for producing second generation biobutanol is developed. Detailed economic analysis of this plant show that it is competitive with gasoline under certain process, and market conditions. The designed plant is then extended, with some modifications, to evaluate the economic and environmental potential of a thermochemical plant for producing third generation biobutanol from macroalgae. It was concluded from the results that the thermochemical route is preferable for producing second generation biobutanol over third generation biobutanol. The novel thermochemical plant design is then updated by using a kinetic model of a pilot-scale demonstrated catalyst to represent the critical mixed alcohol synthesis reaction step. This change allows optimal unreacted syngas recycle configurations for maximizing butanol yield to be established. Furthermore, integrating a DWC, designed using a methodology developed in the thesis, into the updated thermochemical plant leads to additional plant improvements. Overall, the work carried out in this thesis demonstrates that the thermochemical route is a viable option for producing second generation biobutanol. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1622 seconds