Spelling suggestions: "subject:"secretory vesicles""
1 |
Structural and functional characterisation of the exocyst complexSrivastava, Sweta January 2003 (has links)
No description available.
|
2 |
Characterizing dynein in T cellsTan, Sarah Youngsun 23 November 2010 (has links)
T cells play pivotal roles in the immune system and focused secretion of either cytokines or cytotoxic molecules toward its target is crucial for T cell functions. This directional secretion involves two critical steps: the movement of the microtubule organizing center (MTOC) up to the cell-cell contact site and the directed movement of secretory vesicles towards the MTOC. The minus end-directed microtubule motor protein dynein was previously shown in our studies and those of others to accumulate and anchor at the contact site where it then draws the MTOC up to the contact site. A variety of studies led to the suggestion that there were two functionally different pools of dynein in Jurkat cells, one a ring-like structure that pulled the MTOC to the contact site and the other one uniquely corresponding to the distribution of dynactin. This led to the hypothesis that the second pool of dynein drove vesicle transport. To address this possibility, we used siRNA to deplete the cell of dynactin. These studies showed that almost complete knockdown of dynactin (p150[superscript Glued]) had little effect on MTOC translocation but it also had little effect on a panel of Golgi vesicle markers, whose movement the literature suggested was dynein dependent. As an alternative, a Jurkat cell line expressing fluorescent CTLA4, a known marker for the secretory lysosomes was generated. CTLA4 accumulated at the contact site when Jurkat cells made contact with synthetic target cells. When we repeated the p150[superscript Glued] knockdown in these cells, we found that vesicle transport was blocked, whereas MTOC polarization remained normal. These studies suggest that dynein serves critical roles in both aspects of T cell effector function, the movement of the MTOC up to the cell-cell contact site and the movement of a special class of secretory vesicles up to the MTOC. By the combined processes of MTOC translocation and the minus end-directed movement of vesicles, T cells make it so that a concentrated pool of secretory vesicles are aimed to secrete locally only towards target cells. This ensures that the antigen-specificity of T cell activation is followed by a localized response aimed at the intended target cell. / text
|
3 |
Reserpine-Induced Reduction in Norepinephrine Transporter Function Requires Catecholamine Storage VesiclesMandela, Prashant, Chandley, Michelle, Xu, Yao Y., Zhu, Meng Yang, Ordway, Gregory A. 01 May 2010 (has links)
Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [ H]NE uptake capacity, an effect characterized by a robust decrease in the V of the transport of [ H]NE. As expected, reserpine did not displace the binding of [ H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [ H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [ H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca /Ca -calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [ H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, α-methyl-p-tyrosine, increased [ H]NE uptake and eliminated the inhibitory effects of reserpine on [ H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca -independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors.
|
Page generated in 0.0678 seconds