• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Ambient Radio Environment to Support Practical Pervasive Computing

Varshavsky, Alexander 26 February 2009 (has links)
Mobile applications can benefit from increased awareness of the device's context. Unfortunately, existing solutions for inferring context require special purpose sensors or beacons on the mobile devices or in the physical environment. This requirement significantly limits the deployment of these solutions. In this thesis, I argue that mobile devices can infer a substantial amount of their context by leveraging their existing wireless interfaces to monitor ambient radio sources, such as GSM cell towers or WiFi access points. I focus on two important problems in context-aware computing: localization of mobile devices and detecting proximity between mobile devices for authentication purposes. Specifically, I present an accurate localization system based on fingerprinting of GSM signals. I show that the key to more accurate GSM localization is the use of wide signal strength fingerprints that include readings from a large number of base stations. Next, I present a method that addresses the key drawback of fingerprint-based localization systems - the need to collect extensive measurements to train the system in every target environment. Finally, I show how radio environment sensing can be used to secure the communication of devices that come within close proximity. Removing the need for additional hardware on the mobile devices and in the physical environment renders the approach that I present amenable for widespread deployment.
2

Using Ambient Radio Environment to Support Practical Pervasive Computing

Varshavsky, Alexander 26 February 2009 (has links)
Mobile applications can benefit from increased awareness of the device's context. Unfortunately, existing solutions for inferring context require special purpose sensors or beacons on the mobile devices or in the physical environment. This requirement significantly limits the deployment of these solutions. In this thesis, I argue that mobile devices can infer a substantial amount of their context by leveraging their existing wireless interfaces to monitor ambient radio sources, such as GSM cell towers or WiFi access points. I focus on two important problems in context-aware computing: localization of mobile devices and detecting proximity between mobile devices for authentication purposes. Specifically, I present an accurate localization system based on fingerprinting of GSM signals. I show that the key to more accurate GSM localization is the use of wide signal strength fingerprints that include readings from a large number of base stations. Next, I present a method that addresses the key drawback of fingerprint-based localization systems - the need to collect extensive measurements to train the system in every target environment. Finally, I show how radio environment sensing can be used to secure the communication of devices that come within close proximity. Removing the need for additional hardware on the mobile devices and in the physical environment renders the approach that I present amenable for widespread deployment.
3

INFRASTRUCTURE-FREE SECURE PAIRING OF MOBILE DEVICES

Liu, Chunqiu 07 November 2016 (has links)
Mobile devices have advanced tremendously during the last ten years and have changed our daily life in various ways. Secure pairing of mobile devices has become a significant issue considering the huge quantity of active mobile device connections and mobile traffic. However, current commonly used file sharing mobile applications rely on servers completely that are always targeted by attackers. In this thesis work, an innovative mechanism is proposed to generate symmetric keys on both mobile devices independently from a shared movement in arbitrary pattern, which means no server needs to be involved and no data exchange needed. A secret wireless-communication channel can then be established with a particular network strategy.

Page generated in 0.0769 seconds