• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Method for Interpreting the In-Situ Consolidation State of Surficial Seabed Sediments using a Free-Fall Penetrometer

Dorvinen, Jared Ian 13 October 2016 (has links)
Free-fall penetrometers (FFP) are useful instruments for the rapid characterization of seabed sediments. However, the interpretation of FFP data remains largely a skilled task. In order to increase the reliability of results obtained using these instruments, in both expert and non-expert hands, it is advantageous to establish well defined and repeatable procedures for instrument use and data interpretation. The purpose of this research was therefore to develop and refine methods for the interpretation of FFP data. Data were gathered with the FFP Nimrod during two surveys following dredging in Sydney Harbour, Nova Scotia. The challenge of interpreting the data from these two surveys in an efficient and consistent manner was the basis of this work and led to the development of new techniques for improving resolution of the mud-line, identifying areas of erosion and deposition, and qualitatively evaluating the consolidation state of cohesive marine sediments. The method developed for improving the resolution of the mud-line simply describes a procedure of combining the data from different accelerometers with different accuracies and ranges to more clearly define the point of impact with the sea-floor. The method developed to evaluate in-situ sediment consolidation state combines theories of self-weight consolidation and ultimate bearing capacity to predict a range of potential bearing capacities for normally consolidated cohesive sediments. Finally, by combining the previous two methods a third method is proposed for locating areas of potential erosion and deposition. / Master of Science

Page generated in 0.1527 seconds