• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bedload Transport in Gravel-Bed Streams under a wide range of Shields Stresses

Almedeij, Jaber H. 23 April 2002 (has links)
Bedload transport is a complicated phenomenon in gravel-bed streams. Several factors account for this complication, including the different hydrologic regime under which different stream types operate and the wide range of particle sizes of channel bed material. Based on the hydrologic regime, there are two common types of gravel-bed streams: perennial and ephemeral. In terms of channel bed material, a gravel bed may have either unimodal or bimodal sediment. This study examines more closely some aspects of bedload transport in gravel-bed streams and proposes explanations based on fluvial mechanics. First, a comparison between perennial and ephemeral gravel-bed streams is conducted. This comparison demonstrates that under a wide range of Shields stresses, the trends exhibited by the bedload transport data of the two stream types collapse into one continuous curve, thus a unified approach is warranted. Second, an empirical bedload transport relation that accounts for the variation in the make-up of the surface material within a wide range of Shields stresses is developed. The accuracy of the relation is tested using available bedload transport data from streams with unimodal sediment. The relation is also compared against other formulae available in the literature that are commonly used for predicting bedload transport in gravel-bed streams. Third, an approach is proposed for transforming the bimodal sediment into two independent unimodal fractions, one for sand and another for gravel. This transformation makes it possible to carry out two separate computations of bedload transport rate using the bedload relation developed in this study for unimodal sediment. The total bedload transport rate is estimated by adding together the two contributions. / Ph. D.
2

The Role of Turbulence on the Initiation of Sediment Motion

Papanicolaou, Athanasios N. 12 May 1997 (has links)
The present study examines the role of turbulence on the incipient motion of sediment. For this purpose, well-controlled experiments are performed at the laboratory in a tilting flume. In these tests glass beads of the same size and density are used as the testing material to isolate the role of turbulence. State of the art equipment are used during the course of this study. Specifically, a 3-D Laser Doppler Velocimetry system is employed to measure the instantaneous velocity components at different points near the vicinity of a ball while the ball motion is monitored with a video camera. An image analysis program is developed here to analyze the motion of the particles within a test area. To examine the importance of the different stress components in the entrainment of sediment, five tests of different packing configuration are performed. Specifically three different roughness regimes are examined namely, the isolated, the wake interference, and the skimming flow. The results reveal that the instantaneous normal stress in the streamwise direction is the most dominant component of the instantaneous stress tensor. The backbone of this study is the development of a methodology to link the effects of turbulence with the commencement of sediment motion. It is considered that the metastable bursting cycle (i.e. sweeps, ejections, inward and outward interactions) is responsible for the sediment entrainment. And that the sediment entrainment, if any, occurs within a bursting period. The main concept behind the determination of the critical conditions is that the probability of the entrainment of sediment (effect) is equal to the probability of occurrence of these highly energetic turbulent events that have magnitude greater than the critical (cause). The probability of sediment entrainment is computed by means of the image analysis tool. The balance of moments is obtained here to determine the minimum moment that is required for the commencement of sediment motion. The balance of moments yields the deduction of a new variable that is used to describe the probability of occurrence of the different turbulent events. This variable is the summation of the instantaneous normal stresses in the streamwise and vertical direction. It is shown here that a two-parameter gamma density function describes quite well the statistical behavior of this variable. The results that are obtained from the existing model suggest that the present methodology can adequately describe the commencement of sediment motion. It is shown here that the traditionally used shear stress term uw may not be the appropriate measure for the determination of the critical conditions. / Ph. D.

Page generated in 0.1968 seconds