• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 398
  • 45
  • 43
  • 42
  • 11
  • 11
  • 11
  • 11
  • 11
  • 11
  • 9
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 709
  • 709
  • 98
  • 93
  • 92
  • 83
  • 70
  • 59
  • 59
  • 56
  • 52
  • 50
  • 48
  • 46
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

River-Floodplain Connectivity and Sediment Transport Potential: Applications to Sediment Dynamics on Floodplains and Juvenile Freshwater Mussel Settling in Rivers

Sumaiya, FNU 13 October 2022 (has links)
River-floodplain connectivity is the degree of water-driven transport of matter, energy, and organisms between rivers and their floodplains. Recent advancement of high-resolution lidar data and numerical modeling is helpful to explore river-floodplain connectivity precisely to improve our predictions of sediment transport and deposition on floodplains. In the present work, we studied floodplain sediment transport and deposition, and juvenile mussel settling in three river systems in the US. A two-dimensional hydrodynamic model was developed and simulated model results were coupled with field measurements to study river-floodplain systems of the East Fork White River in Indiana, South River in Virginia, and Dan River in North Carolina. Results show that the East Fork White River in Indiana is capable of supplying sand to the channels on the floodplain and these floodplain channels can transport sand in suspension and gravel as bedload. These floodplain channels are supply limited under the current hydrologic regime and identified as net erosional. On the South River floodplain in Virginia, incorporating hydrologic flowpaths as an explicit measure of river-floodplain connectivity can improve predictions of floodplain sediment deposition. Three regression models were developed incorporating flow pathways and the best model was applied to hydrodynamic model results to create a spatial map of floodplain sedimentation rate. The deposition map highlights how floodplain topography and river-floodplain connectivity affect sedimentation rates and can help inform the development of floodplain sediment budgets. Lastly, streamflow conditions were investigated in the Dan River, North Carolina as they affect juvenile freshwater mussel settling. Two uplooking velocity sensors on the river bed were deployed and hydraulic parameters were measured for a 7-mo period in May-November 2019 to estimate the juvenile mussel settling. Results show that juvenile freshwater mussels as large as 280-508 µm could always be suspended during our study period and not be able to settle onto the river bed at the location of our velocity sensors. Therefore, the flow and shear velocity during our study period was high enough to prohibit the recruitment of juvenile freshwater mussels from settling out of suspension at the sensor locations. Modest flow obstructions such as large boulders, downed trees, or large wood that create downstream wakes may be important features that provide suitable conditions for the settling of juvenile freshwater mussels onto the river bed. Furthermore, low flows have been increasing since the year 2000 which may be exacerbating the decline in freshwater mussel populations. / Doctor of Philosophy / Human civilization has developed near rivers due to the wide range of benefits provided by rivers. Rivers provide food, water, and energy to more than 2.7 billion people around the world. However, the health of the rivers is degrading rapidly to meet the increasing demand of the growing population. We studied water, sediment, and mussel transport in the three rivers in the US: East Fork White River in Indiana, South River in Virginia, and Dan River in North Carolina. These rivers play an important role in agriculture, water supply, sediment, and nutrient transport of the surrounding environment. Our research work on East Fork White River in Indiana, USA shows that the area directly adjacent to the river is eroding, which is important information for river managers and policymakers. As part of that work, we identified the potential of various sizes of sediment to move over this area at different flows and developed a method to predict the largest sediment size that could be moved in water and hopping along the ground. This method is also applicable to other areas along rivers and the coast. We estimated the sediment deposition rate, deposition volume, and prepared a spatial map of the sediment deposition pattern for the South River floodplain in Virginia. From this map, deposition hot spots could be identified. We estimated that 66% of the sediment deposited adjacent to the South River was located in 32% of the area. This information will be helpful for understanding how sediment and sediment-associated pollutants deposit around rivers. Our work on the Dan River in North Carolina was focused on freshwater mussels. Our results showed that juvenile freshwater mussels could not have settled onto the river bed at the location of our measurements. Historical data reveal that freshwater mussels are declining at an alarming rate in that river, posing a threat to the river environment. We identified that streamflow has been increasing over the last two decades, which could be a potential cause of declining freshwater mussels.
322

The use of corn pollen and glass beads to estimate fine particulate organic matter retention

Ehrman, Terrence Patrick 05 September 2009 (has links)
Corn pollen and glass beads were used as surrogates of natural fine particulate organic matter (FPOM). These particles were released into ten streams in three different physiographic regions, Appalachian Mountains, Rocky Mountains, and Central Plains, within the United States. Mean travel distance for corn pollen was 121 m and that for glass beads 40 m. Rates of deposition through the water column for both particles were 0.484 mm/sec and 0.643 mm/sec, respectively. This empirically derived deposition velocity was only a fraction of the still water fall velocity. Hydraulic parameters indicate that flow conditions at the stream bed prevent establishment of a laminar sublayer. As a result, corn pollen and glass beads should be entrained and moved as bed- or suspended load. Gradient was the single best stream characteristic to explain variation in retention rates for both corn pollen and glass beads. Based on deposition velocities, estimates of benthic FPOM turnover times ranged from 20 hours to 8.3 days, rate of FPOM downstream movement was 1-24 m/d, and carbon turnover length was 1-24 km. / Master of Science
323

The MEso-SCAle Particle Transport model (MESCAPT) for studying sediment dynamics during storms and tsunamis

Cheng, Wei 12 December 2015 (has links)
Tsunamis and storms are the most devastating coastal hazards that can cause great loss of life and infrastructure damage. To assess tsunami and storm hazard, the magnitude and frequency of each type of event are needed. However, major tsunamis and storms are very infrequent, especially tsunamis, and the only reliable record is the deposits they leave behind. Tsunami and storm deposits can be used to calculate the magnitudes of the respective event, and to contribute to the hazard frequency where there is no historical records. Therefore, for locations where both events could occur, it is crucial to differentiate between the two types of events. Existing studies on the similarities and differences between the two types of deposits all suffer from paucity of the number of events and field data, and a wide range of initial conditions, and thus an unequivocal set of distinguishing deposit characteristics has not been identified yet. In this study, we aim to tackle the problem with the MEso-SCAle Particle Transport model (MESCAPT) that combines the advantages of concentration-based Eulerian methods and particle-based method. The advantage of the former is efficiency and the latter is detailed sediment transport and deposit information. Instead of modeling individual particles, we assume that a group of sediment grains travel and deposit together, which is called a meso-scale particle. This allows simulation domains that are large enough for tsunami and storm wave propagation and inundation. The sediment transport model is coupled with a hydrodynamic model based on the shallow water equations. Simulation results of a case study show good agreements with field measurements of deposits left behind by the 2004 Indian Ocean Tsunami. Idealized tsunami and storm case studies demonstrate the model's capabilities of reproducing morphological changes, as well as microscopic grain-size trends. / Ph. D.
324

Improving Turbidity-Based Estimates of Suspended Sediment Concentrations and Loads

Jastram, John Dietrich 12 June 2007 (has links)
As the impacts of human activities increase sediment transport by aquatic systems the need to accurately quantify this transport becomes paramount. Turbidity is recognized as an effective tool for monitoring suspended sediments in aquatic systems, and with recent technological advances turbidity can be measured in-situ remotely, continuously, and at much finer temporal scales than was previously possible. Although turbidity provides an improved method for estimation of suspended-sediment concentration (SSC), compared to traditional discharge-based methods, there is still significant variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. The purpose of this study was to improve the turbidity-based estimation of SSC. Working at two monitoring sites on the Roanoke River in southwestern Virginia, stage, turbidity, and other water-quality parameters and were monitored with in-situ instrumentation, suspended sediments were sampled manually during elevated turbidity events; those samples were analyzed for SSC and for physical properties; rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC-estimation variance and hydrologic variables that contribute to variance in those physical properties. Results indicated that the inclusion of any of the measured physical properties, which included grain-size distributions, specific surface-area, and organic carbon, in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables, which were measured remotely and on the same temporal scale as turbidity, to represent these physical properties, resulted in a model which was equally as capable of predicting SSC. A square-root transformed turbidity-based SSC estimation model developed for the Roanoke River at Route 117 monitoring station, which included a water level variable, provided 63% less unexplained variance in SSC estimations and 50% narrower 95% prediction intervals for an annual loading estimate, when compared to a simple linear regression using a logarithmic transformation of the response and regressor (turbidity). Unexplained variance and prediction interval width were also reduced using this approach at a second monitoring site, Roanoke River at Thirteenth Street Bridge; the log-based transformation of SSC and regressors was found to be most appropriate at this monitoring station. Furthermore, this study demonstrated the potential for a single model, generated from a pooled set of data from the two monitoring sites, to estimate SSC with less variance than a model generated only from data collected at this single site. When applied at suitable locations, the use of this pooled model approach could provide many benefits to monitoring programs, such as developing SSC-estimation models for multiple sites which individually do not have enough data to generate a robust model or extending the model to monitoring sites between those for which the model was developed and significantly reducing sampling costs for intensive monitoring programs. / Master of Science
325

Prediction of estuarine morphological evolution

Savant, Gaurav, January 2008 (has links)
Thesis (Ph.D.)--Mississippi State University. Department of Civil and Environmental Engineering. / Title from title screen. Includes bibliographical references.
326

The application of a two-dimensional sediment transport model in a Cumberland Plateau mountainous stream reach with complex morphology and coarse substrate

Johnson, Daniel Hale. January 2008 (has links) (PDF)
Thesis (M.S.)--University of Tennessee, Knoxville, 2008. / Title from title page screen (viewed on Sept. 23, 2009). Thesis advisor: John S. Schwartz. Vita. Includes bibliographical references.
327

Reducing sediment production from forest roads during wet-weather use /

Toman, Elizabeth Myers. January 2007 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references. Also available on the World Wide Web.
328

Uticaj ugljeničnih nanomaterijala na ponašanje odabranih hidrofobnih organskih jedinjenja u akvatičnim sistemima / Impact of carbon based nanomaterials on behavior selected hydrophobic organic compounds in aquatic systems

Kragulj Marijana 02 July 2013 (has links)
<p>U prvom delu rada ispitana je adsorpcija četiri grupe organskih&nbsp;jedinjenja: (1) nitroaromatičnih (nitrobenzen), (2) nepolarno alifatičnih&nbsp;(heksan), (3)&nbsp; monoaromatičnih (benzen, toluen, 1,2,3- i 1,2,4-trihlorbenzen) i (4) policikličnih aromatičnih ugljovodonika, PAH&nbsp;(naftalen, fenantren, piren i fluoranten) na vi&scaron;eslojnim ugljeničnim&nbsp;nanocevima (od eng. multiwalled carbon nanotubes, MWCNTs). Cilj&nbsp;ovog dela rada bio je pronaći korelaciju između parametara adsorpcije i&nbsp;fizičko-hemijskih karakteristika organskih molekula, kao i parametara&nbsp;<br />adsorpcije i karakteristika adsorbenata. Na osnovu dobijenih korelacija&nbsp;predložiti mehanizam adsorpcije ispitivanih organskih molekula na&nbsp;MWCNT-u.</p><p>U cilju ispitivanja uticaja kiseoničnih funkcionalnih grupa na povr&scaron;ini&nbsp;MWCNT-a odabrane su tri vrste MWCNT-a: originalni, nemodifikovani&nbsp;MWCNT (OMWCNT) i dve vrste funkcionalno modifikovanog&nbsp;MWCNT-a koji su dobijeni tretiranjem sa kiselinom tokom 3 h&nbsp;(FMWCNT3h) i 6 h (FMWCNT6h). Sve adsorpcione izoterme opisane&nbsp;<br />su Freundlich-ovim modelom. Nelinearnost izotermi bila je u opsegu od&nbsp;0,418 do 0,897. Rezultati pokazuju da dobijeni afiniteti adsorpcije (za ravnotežnu koncentraciju 50% rastvorljivosti jedinjenja u vodi, K<sub>d</sub>0,5 S<sub>W</sub>) za PAH-ove rastu sa povećanjem specifične povr&scaron;ine (SP) adsorbenta. Veći afiniteti adsorpcije dobijeni su za velike molekule kao &scaron;to su PAH-ovi u poređenju sa malim molekulima (benzen, toluen i heksan) &scaron;to može biti posledica veće kontaktne povr&scaron;ine između većih molekula i povr&scaron;ine adsorbenta. Pozitivna korelacija između afiniteta adsorpcije i hidrofobnosti molekula ukazuje da hidrofobne interakcije dominantno kontroli&scaron;u adsorpciju ispitivanih organskih jedinjenja, osim u slučaju nitobenzena. Da bi se ispitao uticaj &pi;-&pi; interakcija,&nbsp; K<sub>d</sub> za odabranu ravnotežnu koncentraciju su normalizovane sa hidrofobno&scaron;ću molekula pri čemu su dobijeni odgovarajući&nbsp; K<sub>d</sub>/K<sub>OW&nbsp;</sub>odnosi. Za sva ispitivana jedinjenja K<sub>d</sub>/K<sub>OW</sub><font size="1">&nbsp;</font>odnosi na svim ispitivanim MWCNT rastu u sledećem nizu: nepolarni alifatični &lt; monoaromatični &lt; PAH-ovi &lt; nitrobenzen, &scaron;to ukazuje da &pi;-&pi; interakcije značajno pobolj&scaron;avaju adsorpciju aromatičnih jedinjenja na MWCNT-u. Snažne interakcije između MWCNT-a i nitrobenzena posledica su formiranja &pi;-&pi; elektron donorsko-akceptorskih (EDA) interakcija izemđu nitroaromatičnih molekula (elektron akceptori)i visoko polarizovane ugljenične povr&scaron;ine nanocevi (elektron donori). Na osnovu dobijenih rezultata može se uočiti da se pri adsorpciji ispitivanihorganskih molekula na MWCNT-u istovreme odigrava vi&scaron;e mehanizama.</p><p>U drugom delu rada ispitan je uticaj ugljeničnog nanomaterijala (od eng.&nbsp;carbon based nanomaterial, CNM) natransport odabranih organskih&nbsp;jedinjenja (1,2,3- i 1,2,4-trihlorbenzena, naftalena, fenantrena, pirena i&nbsp;fluorantena) kroz sediment Dunava. Cilj ovog dela rada bio je ispitati&nbsp;mehanizam transporta odabranih organskih jedinjenja u prisustvu i&nbsp;odsustvu CNM. C/C<sub>0&nbsp;</sub>vrednosti, dobijene za vreme trajanja eksperimenta&nbsp;<br />(t=96 h), ispitivanog jedinjenja u eluatu kolone napunjene samo&nbsp;sedimentom rastu u sledećem nizu: fluoranten &lt; piren &lt; fenantren &lt;&nbsp;1,2,4-trihlorbenzen &lt; 1,2,3-trihlorbenzen &lt; naftalen. U cilju ispitivanja&nbsp;uticaja hidrofobnosti ispitivanih molekula na sorpciju u neravnotežnim&nbsp;uslovima, dobijene vrednosti C/C<sub>0</sub> ispitivanih molekula su korelirane sa&nbsp;hidrofobno&scaron;ću molekula. Uočena je negativna korelacija &scaron;to ukazuje da&nbsp;hidrofobniji molekuli pokazuju duže vreme zadržavanja na koloni, a time&nbsp;i veću neravnotežnu sorpcijutokom transporta.&nbsp;</p><p>U prisustvu FMWCNT3h u koloni kojaje napunjena sedimentom može&nbsp;se uočiti da su koncentracije ispitivanih jedinjenja u eluatu manje za 2-3&nbsp;puta. Pri datim uslovima procenat detektovane koncentracije ispitivanog&nbsp;jedinjenja u eluatu raste u sledećem nizu: fluoranten &lt; fenantren &lt; piren &lt; naftalen &lt; 1,2,4-trihlorbenzena &lt; 1,2,3-trihlorbenzen. Predloženi mehanizam je sledeći: na eksperimentalnoj pH (pH=6,5) karboksilne grupe na FMWCNT3h su negativno naelekrisane, s druge strane tačka nultog naelektrisanja sedimenta Dunav je 4, &scaron;to ukazuje da je ukupna povr&scaron;ina pri pH=6,5 negativno naelektrisana. Međutim, metalni oksidi i hidroksidi gvožđa, aluminijuma i nikla na povr&scaron;ini sedimenta uzrokuju pozitivno naelektrisane centre &scaron;to dovodi do depozicije FMWCNT3h kao posledica elektrostatičkog privlačenja. Pri transportu organskih jedinjenja kroz sediment Dunava u prisustvu FMWCNT3h dolazi do simultane sorpcije organskih jedinjenja na organskom ugljeniku sedimenta i do adsorpcije na FMWCNT3h. Kada se pH vrednost poveća smanjuje se pozitivno naelekrisanje metalnih&nbsp; oksida i hidroksida na povr&scaron;ini sedimenta &scaron;to dovodi do povećane mobilnosti FMWCNT3h, a time i organskih jedinjenja adsorbovanih na njima. Svi rezultati ukazuju da pH vrednost ima veoma značajnu ulogu i može povećati &nbsp;transport funkcionalizovanog MWCNT-a, a time i transport organskih molekula adsorbovanih na njima.</p> / <p>The first part of the thesis investigates the adsorption of four&nbsp;groups of organic compounds (OCs): (1) nitroaromatics (nitrobenzene),&nbsp;(2) nonpolar aliphatics (hexane), (3) monoaromatics (benzene, toluene,&nbsp;1,2,3- and 1,2,4-trichlorobenzene) and (4) polycyclic aromatic&nbsp;hydrocarbons (PAHs, napthalene,&nbsp; phenanthrene, pyrene and&nbsp;fluoranthene) on multiwalled carbon nanotubes (MWCNTs). This part of&nbsp;the work aimed to find a correlationbetween the adsorption parameters&nbsp;and physical-chemical properties of the organic molecules, as well as the&nbsp;parameters of adsorption and the characteristics of the adsorbents. On the&nbsp;basis of the obtained correlations the adsorption mechanism was&nbsp;proposed. In order to investigate the influence which oxygen containing&nbsp;functional groups exert on the adsorption process, three MWCNTs were&nbsp;used: the pristine (original, as-received) MWCNTs (OMWCNT) and two&nbsp;<br />MWCNTs functionally modified by acid treatment of OMWCNT over 3&nbsp;h and 6 h (FMWCNT3h, FMWCNT6h). All adsorption isotherms well&nbsp;fitted with the Freundlich model. The nonlinearity of the isotherms&nbsp;ranged from 0.418 to 0.897. The results show that K<sub>d&nbsp;</sub>values for PAHs&nbsp;increased with increasing specific surface areas (SSAs). The adsorption&nbsp;affinities of the larger molecular size OCs (PAHs) were higher &nbsp;than those of the smaller size OCs (benzene, toluene and hexane) which is probably due to their large contact area with the surface of the adsorbent. Adsorption of OCs on MWCNTs was mainly controlled by hydrophobic interactions, except for the nitroaromatic compound, as shown by the increasing adsorption affinities with the compound&rsquo;s hydrophobicity. K<sub>OW</sub>-normalized adsorption coefficients (K<sub>d</sub>/K<sub>OW</sub>) for all the investigated compounds on all the MWCNTs followed the order: nonpolar aliphatic &lt; monoaromatics &lt; PAHs &lt; nitroaromatic, implying that &pi;-&pi; interactions enhanced the adsorption of aromatics on the MWCNTs. It can be concluded that the strong adsorptiveinteractions between the MWCNTs and nitroaromatics was due to the &pi;-&pi; electron-donor&ndash;acceptor (EDA) interaction between nitroaromatic molecules (electron acceptors) and the highly polarisable graphene sheets(electron donors) of the carbon nanotubes. Based on the obtained results, it can be concluded that multiple mechanisms control the adsorption of organic compounds on MWCNTs.</p><p>In the second part, the influence of carbon based nanomaterials CNM on&nbsp;transport of selected organic compounds (1,2,3 - and 1,2,4-trichlorobenzene, naphthalene, phenanthrene, pyrene and fluoranthene)&nbsp;through sediment Danube was investigated. &nbsp;The aim of this part of the&nbsp;work was to investigate the transport mechanism of selected organic&nbsp;compounds in the presence and absence of CNM. The C/C<sub>0&nbsp;</sub>values for the&nbsp;tested compounds in the eluate of the column filled with sediment only&nbsp;increased in the following order: fluoranthene &lt;pyrene &lt;phenanthrene&nbsp;&lt;1,2,4-trichlorobenzene &lt;1,2,3-trichlorobenzene &lt;naphthalene. In order&nbsp;to investigate the influence of&nbsp; hydrophobicity of the investigated&nbsp;compounds on the nonequilibrium sorption, the obtained C/C<sub>0&nbsp;</sub>values (for&nbsp;the duration of the experiment, t = 96 h) for these molecules were&nbsp;correlated with the hydrophobicity of the molecules. There was a&nbsp;negative correlation, indicating that more hydrophobic molecules show&nbsp;long residence times in the column, and thus had higher non-equilibrium&nbsp;sorption during transport. In the presence of FMWCNT3h in the column&nbsp;filled with sediment, it can be observed that the concentrations of&nbsp;compounds in the column eluate decreased by factors of 2-3. C/C<sub>0&nbsp;</sub>values&nbsp;for the investigated compounds in the eluate increased in the following&nbsp;order: fluoranthene &lt;phenanthrene &lt;pyrene &lt;naphthalene &lt;1,2,4-trichlorobenzene &lt;1,2,3-trichlorobenzene. The proposed mechanism is as&nbsp;follows: under the experimental pH (pH = 6.5), carboxyl groups are&nbsp;negatively charged on the surface of FMWCNT3h and the point of zero&nbsp;charge of the Danube sediment is 4, which indicates thatthe total surface of the Danube sediment at pH 6.5 isnegatively charged. However, metal oxides and hydroxides of iron, aluminum and nickel on the surface of the sediment cause a positively charged centre that leads to the deposition of FMWCNT3h as a result of electrostatic attraction. Transport of organic compounds through the Danube sediment in the presence FMWCNT3h leads to the simultaneous &nbsp;sorption oforganic compounds on the sediment organic carbon and the adsorption of &nbsp;FMWCNT3h. When the pH increased, the positive charge of metal oxides and hydroxides on the sediment surface decreased, which leads to increased FMWCNT3h mobility and thus the organic compounds adsorbed on them. All results indicate that the pH value plays animportant role and can increase the transport of functionally modified MWCNT&#39;s, and thus the transport of organic molecules adsorbed on them.&nbsp;</p>
329

A Novel Approach to Flow and Sediment Transport Estimation in Estuaries and Bays

Moftakhari Rostamkhani, Hamed 11 March 2015 (has links)
Reliable estimates of river discharge and sediment transport to the ocean from large tidal rivers are vital for water resources management, efficient river and harbor management, navigational purposes, and climate analyses. Due to the difficulties inherent in measuring tidal-river discharge, hydrological and sedimentological records are typically too short to adequately characterize long-term (decadal) trends. Also, uncertainties associated with observation and calibration of hydrological models suggest a need for more accurate methods based on longer records of hydrodynamic parameters (e.g. tides). Tidal theory indicates that tides and river discharge interact through quadratic bed friction, which diminishes and distorts the tidal wave as discharge increases. In this study, using tidal constituents, astronomical forcing and a model of the frictional interaction of flow and tides, I propose a novel Tidal Discharge Estimate (TDE) to predict freshwater discharge with an approximate averaging interval of 18 days for time periods with tidal data but no river flow records. Next, using continuous wavelet analysis of tidal properties, I develop a method of estimating river discharge using tides measured on multiple gages along tidal rivers to improve the time-resolution and accuracy of TDE. The applicability of the Multiple-gauge Discharge Estimate (MTDE) is first demonstrated in the two largest tidal-fluvial systems of the Pacific Northwest, the Columbia River Estuary (CRE) and Fraser River Estuary (FRE). A numerical model of an idealized estuary with similar forcing as the FRE and CRE is next run under different hydrologic and morphologic scenarios to evaluate the effect of convergence, friction, and river flow variations on the applicability of MTDE. The TDE method was applied to the San Francisco Bay, using the continuous hourly tide record available since 1858. Results show that TDE reproduces known San Francisco (SF) Bay delta inflows from 1930-present with a Nash-Sutcliffe coefficient of 0.81 and is a useful method for hindcasting historical flows from 1858 - 1929, a period that predates direct measurement of delta discharge. I also recover and digitize ~80 years of Sacramento River daily water level data between 1849 and 1946, from which river discharge to SF Bay is estimated on a daily basis, after adjusting for changes to the river channel. This discharge combined with Net Delta Outflow Index estimates (1930 - 2011) and flow estimates from tidal data (1858 - 2011) provides a more accurate version of SF Bay historic daily inflows from 1849 - 2011. Next, the history of sediment transport and discharge into SF Bay from 1849-present is reevaluated using the daily discharge estimates. A non-stationary rating curve between river flow and sediment transport is developed, with net sedimentation observed during five bathymetric surveys that were used to constrain the total integrated sediment discharge. Results show that ~1600±320 million-tons of sediment have been delivered to SF Bay between 1850 and 2011. There has been an approximately 25 - 30% reduction of annual flow since the 19th century, along with decreased sediment supply. This has resulted in a ~60% reduction in annual sediment delivery to SF Bay. The annual hydrograph of inflow to SF Bay and the seasonality of sediment flux have changed considerably over time, due to both human alteration and climate change. Significant historic spring-melt peak floods have disappeared in the modern system and now peak flows mostly occur in winter. My flow estimation methods also confirm that the flood of January 1862 had the largest daily sediment load and the second largest daily discharge since 1849.
330

Modeling of Hydrodynamic Circulation and Cohesive Sediment Transport and Prediction of Shoreline Erosion in Hartwell Lake, SC/GA

Seker-Elci, Sebnem 12 July 2004 (has links)
This dissertation addresses hydrodynamics, sediment transport and shoreline erosion within the main pool of Hartwell Lake, a U.S. Army Corps of Engineers reservoir built on the Savannah River, between Anderson, South Carolina, and Hartwell, Georgia, USA. A U.S. Environmental Protection Agency (EPA) Superfund site is located on a tributary of Hartwell Lake because of high concentrations of polychlorinated biphenyls (PCBs) in the lake sediments. PCBs are hydrophobic and typically bond to fine-grained sediments, such as silts and clays. The primary goal of the study was to document, through field measurements, and model, using a 3-D numerical model of flow and sediment transport, the fate of sediments within the main pool of Hartwell Lake. To document forty years of sedimentation within the reservoir, bathymetric survey data were collected in Hartwell Lake during the period, February 10-14, 2003. The bathymetric surveys revealed that deposition was, in places, up to two meters thickness in forty years. During the field campaign, flow velocity measurements were made primarily to provide a check on the magnitude of the velocities predicted by the numerical model used in the study. Shoreline surveys provided data for the modeling procedure for shoreline change. This in turn facilitated specification of the sediment flux into the domain via shoreline erosion. Hartwell Lake is located near the southern terminus of the Appalachian mountain chain in the Piedmont region. Sediments contain high fractions of silt and clay. Hartwell Lake has a shoreline length of 1548 km, and erosion of lake shorelines has been a significant problem for many homeowners. As of September 2002, there were 1123 permitted riprap installations, and 393 permitted retaining walls, for a total of 1516 erosion control structures along the lakeshores (source: USACE Hartwell Office), an indication of the magnitude of the erosion problem. To quantify the erosion rate of the shorelines, an approach that relates erosion rates to wind wave forces was developed. A simplified representation of the shape of beach profiles is employed. Historical shoreline change rates were quantified by comparing available digital aerial photos taken in different years, and the erosion prediction model was calibrated using these computed erosion rates. Sediments derived from shoreline erosion were introduced to the model as an additional source along the model boundary, and the fate of the eroding sediments was investigated via numerical modeling.

Page generated in 0.1238 seconds